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Antimicrobial peptides (AMPs) have been extensively studied due to their vast natural

abundance and ability to kill microbes. In an era critically lacking in new antibiotics,

manipulating AMPs for therapeutic application is a promising option. However, bacterial

pathogens resistant to AMPs remain problematic. To improve AMPs antimicrobial

efficacy, their use in conjunction with other antimicrobials has been proposed. How

might this work? AMPs kill bacteria by forming pores in bacterial membranes or by

inhibiting bacterial macromolecular functions. What remains unknown is the duration for

which AMPs keep bacterial pores open, and the extent to which bacteria can recover

by repairing these pores. In this mini-review, we discuss various antimicrobial synergies

with AMPs. Such synergies might arise if the antimicrobial agents helped to keep

bacterial pores open for longer periods of time, prevented pore repair, perturbed bacterial

intracellular functions at greater levels, or performed other independent bacterial killing

mechanisms. We first discuss combinations of AMPs, and then focus on histones, which

have antimicrobial activity and co-localize with AMPs on lipid droplets and in neutrophil

extracellular traps (NETs). Recent work has demonstrated that histones can enhance

AMP-induced membrane permeation. It is possible that histones, histone fragments,

and histone-like peptides could amplify the antimicrobial effects of AMPs, giving rise to

antimicrobial synergy. If so, clarifying these mechanisms will thus improve our overall

understanding of the antimicrobial processes and potentially contribute to improved

drug design.
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INTRODUCTION

Bacterial infections are an increasing threat to global health, due to both an increase in
bacterial resistance to current therapeutics and also a decline in new antibiotic development.
This results in rising numbers of untreatable health complications and deaths worldwide
(1). There is thus an urgent need to identify new antibacterial strategies to effectively treat
drug-resistant pathogens. The demand for such new strategies has encouraged scientists to
investigate biologically-abundant antimicrobial tools that can be manipulated to kill bacteria.
Repurposing and modifying known natural antimicrobial proteins may contribute to successful
development of new therapeutic strategies.

Antimicrobial peptides (AMPs) have broad spectrum antimicrobial activity and are found
ubiquitously in nature. They have been extensively studied as a promising option to combat
multidrug-resistant bacteria. However, the rapid ability of bacteria to evolve requires new
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approaches to limit potential bacterial resistance to AMPs (2–
4). Here, we discuss the use of AMPs in conjunction with
other antimicrobials to form antimicrobial synergy, in which
the combined antimicrobial effect is greater than the sum of
either treatment alone. Antimicrobial synergy could potentially
reduce the rise of bacterial resistance. A number of synergistic
approaches using AMPs have been sought, with 300 reports made
during the last 5 years as determined by PubMed. We examine
and propose potential mechanisms that give rise to antimicrobial
synergy with AMPs.

PHYSIOLOGICAL ROLES

AMPs are ubiquitously observed in nature and are known
for their physiological antimicrobial roles. They are produced
by both prokaryotic and eukaryotic organisms, ranging from
bacteria (5, 6), insects (7–9), amphibians (10–12), and humans
(13–16). AMPs protect organisms from microbial harm and thus
play vital roles in innate immunity (17) by directly or indirectly
killing microbes. AMPs directly kill microbes by acting at the
bacterial membrane (18, 19) or eliciting bacterial cell death via
inhibition ofmacromolecular functions (20). AMPs indirectly kill
microbes by directing cytokines to sites of infection for increased
immunological responses in hosts (21). Neutrophils, the first
line of innate immune defense, have dense granules that are
packed with AMPs that are used to defend against microbial
infections (22). When stimulated, neutrophils can also release
their intracellular contents to form neutrophil extracellular traps
(NETs). These web-like structures, consisting of DNA, AMPs,
and other antimicrobial agents, can entrap and kill bacteria (23,
24). Similar to neutrophil elastases, AMPs have vital roles in NETs
in controlling microbial threats (25). A recent report indicates
that AMPs also localize to cellular lipid droplets with histones
(26) and contribute to lipid-droplet based cellular immunity.

STRUCTURE AND FUNCTION

AMPs are typically small peptides, ranging from about 5 to 50
amino acids, but can be as large as over 100 amino acids (27).
Most AMPs are positively charged (+2 to +9) due to their
high proportions of arginine and lysine residues (28), though
negatively charged AMPs do also exist (21, 29, 30). Structures
of AMPs include α-helix, β-sheet, extended, and loop (31), with
α-helix and β-sheet structures being the most common. More
complex structures also exist, including cyclic and lasso peptides
(32). AMPs are known for their amphipathic nature, typically
consisting 50% of hydrophobic residues including alanine,
glycine, and leucine (28, 33). The biophysical properties of
AMPs contribute to their potent antimicrobial activity. Cationic
(positively charged) AMPs can bind to anionic (negatively
charged) lipopolysaccharide (LPS) and lipoteichoic acid (LTA),
which are major components of bacterial membranes (34). The
amphipathic nature of AMPs also enables them to interact with
and insert into bacterial cell membranes.

Many reports attribute the antimicrobial activity of AMPs
to the formation of pores within bacterial membranes, which

can elicit cell damage and death. Several different classes of
AMP-induced membrane pores have been proposed, including
barrel-stave, toroidal, and carpet (20). In a barrel-stave
model, peptide monomers form a transmembrane channel
that is parallel to bacterial membrane phospholipids. A
toroidal model proposes that AMPs insert into bacterial cell
membranes and force membrane lipid structures to change
in conformation, as opposed to pore insertion through an
intact membrane like that of the barrel-stave model. The carpet
model suggests that AMPs do not form transmembrane pores
but instead localize to the bacterial membrane surface, where
they disrupt membrane organization and integrity (35). These
membrane disruptions can cause loss of bacterial membrane
proton gradient, cell leakage, and eventually cell death (19).
Alternative models to pore formation in membranes have
also been proposed, with pore formation and cell leakage
being attributed to the high concentrations of AMPs that are
typically used in membrane pore formation studies (35). In
particular, the entry of AMPs into bacterial cells may induce
intracellular damage, including disruption of bacterial nucleic
acid synthesis, protein synthesis, cell wall synthesis, and cell
division (20).

BACTERIAL RESISTANCE TO AMPs

LPS in Gram-negative bacterial membranes and LTA in
Gram-positive cell walls contribute to overall negative
charges of bacterial cell exteriors. Negatively charged
membranes, which are conserved among bacteria, provide
cytoplasmic rigidity and proper cationic gradients that are
necessary for bacterial survival (36). However, cationic
AMPs can easily bind to anionic components of bacterial
membranes via electrostatic interactions to elicit cell
damage. Complete bacterial resistance to AMPs is unlikely
because evolving a bacterial membrane that possesses an
outer neutral or positive charge simply for the purpose
of avoiding AMPs would be too evolutionarily costly
(37, 38). Still, many studies have shown that bacteria
can have intrinsic resistance or evolve resistance to
AMPs (2–4, 39, 40).

A vast array of bacterial resistance and defense mechanisms
against AMPs exist, including the utilization of efflux pumps (41–
43), modifications to cell membrane charge (38), expression of
protective barriers around bacterial membranes (44), inhibition
of antimicrobials via peptide cleavage (45, 46), and potential
membrane healing and recovery post-damage (47). Both
multidrug-resistant Gram-negative and Gram-positive bacteria
utilize efflux pump mechanisms to actively pump AMPs back
out into the extracellular environment to prevent cell damage
(41, 42). In Gram-negative S. Typhimurium and P. aeruginosa,
the lipid A portion of LPS is modified with the addition of 4-
amino-4-deoxy-L-arabinose, which reduces the overall negative
charge and thus reduces the binding affinity of positively
charged AMPs, including azurocidin, polymyxin B (PMB),
indolicidin, and LL-37 (48–50). In Gram-positive S. aureus,
lysine is added to membrane phospholipids, reducing the overall
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anionic charge and affinity to defensin-like cationic AMPs
(51). Colanic acid is a polysaccharide which functions as a
protective capsule around many Enterobacteriaceae (52) and
may prevent AMP-mediated activity. It has been suggested
that these capsular polysaccharides play a role in bacterial
resistance (40, 53) and virulence (54, 55). For example,
capsular polysaccharides increase resistance of K. pneumoniae,
S. pneumoniae, and P. aeruginosa to both PMB and human
neutrophil alpha-defensin 1 (53). Additionally, increased slime
production by S. epidermidis in medical catheters has been
reported when bacterial capsular polysaccharides are expressed
(54, 55). Bacterial species like E. coli and S. Typhimurium
also release proteases to cleave and inhibit antimicrobials that
threaten their survival, particularly protamine and alpha helical
cationic AMPs, respectively (45, 46).

Recent work suggests that bacteria can recover from pores
formed by LL-37 (47). However, the duration in which AMPs
can keep bacterial pores open and the extent to which bacteria
can repair these pores is unknown. It is possible that efflux
pumps are used to eject AMPs out of the membrane to allow
for bacterial lipid bilayers to reform. Additionally, bacterial
cell wall biosynthesis may be upregulated for the purpose of
membrane repair.

ANTIMICROBIAL SYNERGIES WITH AMPs

To optimize the use of antibiotics, it is important to mitigate
potential bacterial resistance mechanisms. Many AMPs have
been tested in clinical trials due their potent antimicrobial
activity (56, 57). However, as with any antibiotic, using
AMPs is associated with the risk of ever-evolving bacterial
resistance that could negate their effects. A potential way to
reduce the risk of drug-resistance to AMPs in clinical settings
is to use AMPs in conjunction with other antimicrobials,
focusing on combinations that lead to effective antimicrobial
synergies. Synergistic combinations that have multiple targets
in independent pathways could require two independent and
simultaneous sets of mutations to address both challenges.
Synergy could also be more lethal, decreasing the likelihood that
bacteria can escape and develop resistance.

It has been suggested that bacteria are less likely to evolve
resistance to antibiotic cocktails than to a single antimicrobial
(58, 59). Consistent with this is the fact that multiple AMPs
are released during immune responses in vivo, making it
difficult for bacteria to develop resistance (60). Therefore,
using AMP cocktails, especially ones that convey antimicrobial
synergy, could be an effective strategy. Synergistic antibacterial
combinations with AMPs could enable bacterial pores to
stay open for longer durations, prevent pore repair, increase
perturbation of bacterial intracellular functions, or convey other
independent but complementary bacterial killing mechanisms.
These mechanisms may potentially increase antimicrobial
efficacy, decrease resistance, and reduce host toxicity if only
low concentrations of each antimicrobial component are needed
to carry out a large antimicrobial effect (61). The abundance
of antimicrobial synergies discovered with AMPs presents

exciting possibilities for the potential use of synergistic AMP
combinations in clinical settings.

Synergy With Other AMPs
Numerous reports indicate that AMPs synergize with other
AMPs. We discuss antimicrobial synergies of AMPs from
organisms like insects, amphibians, and mammals, suggesting
that synergistic interactions are common between AMPs within
the animal kingdom.

The insect AMPs, diptericins and attacins, show synergistic
killing against P. burhodogranariea in flies (62). A combination
of the synthetic AMP pexiganan and bumblebee AMP melittin
show S. aureus killing effects comparable to that of Vancomycin, a
last line of defense antibiotic (39). Additionally, the antimicrobial
activity of a bumblebee AMP, abaecin, is synergistically enhanced
by the presence of a pore forming AMP, hymenoptaecin (63). In
this example, hymenoptaecin forms membrane pores, potentially
causing cell leakage or lytic cell death and enabling the entry of
abaecin into bacterial cells. The hymenoptaecin-induced pores
may increase the ability for abaecin to access and bind to DnaK,
a molecular chaperone, to inhibit bacterial replication (63). Thus,
the two AMPs work together to kill bacteria on both a membrane
and intracellular level.

AMPs can potentially bind to other AMPs to form more
potent antibacterial agents. For example, the amphibian AMPs
magainin-2 and peptidyl-glycylleucine-carboxyamide (PGLa)
work synergistically to inhibit E. coli growth (11). When
magainin-2 and PGLa are added together, they form a
“supramolecule” to quickly induce bacterial membrane pores
and mediate pore stabilization (64). Moreover, it has been
reported that PGLa forms an antiparallel dimer that spans the cell
membrane where it binds to magainin-2 at the C-terminus (65),
forming toroidal pore structures (66). These results are consistent
with an additional report in which fused AMPs induce greater
killing activities in S. mutans than on their own (67). These
findings suggest that AMPs can bind other AMPs or other types
of antimicrobials to give rise to antimicrobial synergy.

The mammalian AMP protegrin 1 has been reported to
exhibit synergistic killing activity with indolicidin, LL-37, and
bactenecin against P. aeruginosa and E. coli (68). Additionally,
the combination of indolicidin and bactenecin gives rise to
antimicrobial synergy against E. coli (68). The combinations of
protegrin 1 with LL-37, bactenecin with LL-37, and protegrin
1 with bactenecin are also synergistic against E. faecalis (68).
Lastly, human platelet-derived synthetic AMP combinations of
PD1 through PD4 and Arg-Trp repeats RW1 through RW5 are
synergistically antimicrobial in platelets (69).

AMPs can be effective when their mechanisms are
complementary, such as in the case of the AMPs coleoptericin
and defensin. Coleoptericin contributes to the survival of
the mealworm beetle, Tenebrio molitor, but does not reduce
bacterial load. In contrast, defensin does not improve host
survival but reduces bacterial load (70). Their combined use
both significantly increases host survival and reduces bacterial
load (70). Using multiple AMPs together can thus maintain the
independent functions of each AMP, resulting in a more effective
treatment strategy.
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While many studies demonstrate robust antimicrobial
synergies with just two AMPs, synergies with three AMPs reveal
even greater effects. For example, while apidaecin functions
antagonistically with either pexiganan or LL 19-27 (an analog
of LL-37), the triple combination of apidaecin, pexiganan, and
LL 19-27 demonstrate strong synergism (58). Synergy was also
observed from the combination of human β-defensin, LL-37,
and lysozyme, which are produced on the skin, against S. aureus
and E. coli (13). The observation of synergy between these
antimicrobials is an example in which natural defense molecules
have greater activity in combination rather than individually.
Thus, combining natural antimicrobials could yield further
discoveries of synergy.

Synergy With Antibiotics
AMPs can also synergize with antibiotics, and in some
cases, overcome antibiotic resistance. The use of AMPs to
increase the efficacy of already approved antibiotics appears
to be a promising option to combat commonly drug-
resistant pathogens. The human AMPs, LL-37 and human
β-defensin 3 (HBD3), have antimicrobial synergy with the
antibiotics tigecycline, moxifloxacin, piperacillin-tazobactam,
and meropenem. Specifically, antibiotic killing against C. difficile
is improved when both LL-37 and HBD3 are present (71).
Lastly, LL 17-29 establishes antimicrobial synergy with the
antibiotic chloramphenicol against highly virulent bacterial
strains, including methicillin-resistant S. aureus and multidrug-
resistant P. aeruginosa (59).

Combining the AMPs nisin Z, pediocin, or colistin with
various antibiotics, including penicillin, ampicillin, or rifampicin,
is effective in overcoming antibiotic-resistance in P. fluorescens
(72). Also, the AMP melamine has synergistic killing activities
when paired with ciprofloxacin, a fluoroquinolone antibiotic,
against antibiotic-resistant strains of P. aeruginosa. This
combination may aid in overcoming P. aeruginosa resistance
to fluoroquinolone antibiotics (73). Synergistic combinations
of AMPs with PMB (originally discovered as an AMP),
erythromycin, and tetracycline have also been shown. In
particular, variants of the AMP indolicidin synergize with the
antibiotics PMB, tobramycin, gentamycin, and amikacin (74).

One of the mechanisms by which AMPs improve antibiotic
function is by disrupting bacterial membranes to aid in the
delivery of antibiotics into the bacterial cytoplasm, where
antibiotics can act on intracellular targets. For example, the AMP
arenicin-1 synergistically functions with antibiotics including
ampicillin, erythromycin, and chloramphenicol to kill S. aureus,
S. epidermis, P. aeruginosa, and E. coli (75). Arenicin-1 assists
in the uptake of antibiotics into cells and inhibits bacterial
growth via hydroxyl radical formation (75), which suggests
complementary mechanisms are at play.

Synergy With Histones
Histones, more commonly known for their roles in condensing
eukaryotic DNA, have antibacterial properties (76, 77). However,
the mechanisms by which histones kill bacteria have not
previously been understood (78). Since histones are positively
charged and have similar structures to that of AMPs, it has been

suggested that histones and AMPs have redundant antibacterial
roles (79, 80). Histones and AMPs colocalize in innate immunity
components, including on cellular lipid droplets and in NETs,
suggesting that they could work together to kill microbes (26, 81–
83). For fish in particular, fractions of salmon histone H1 have
reported antimicrobial synergy with lysozyme and a flounder
AMP, pleurocidin (84). Recent work demonstrates that histones
H2A and H3 can function with the pore-forming AMPs LL-
37 and magainin-2 to produce antibacterial synergy against
Gram-positive and Gram-negative bacteria (47). Additionally,
H2A and the pore-forming antimicrobial PMB synergistically
work together to completely inhibit E. coli growth over 24
hours (47). It is important to note that histones must be
paired with pore forming AMPs in order for this synergistic
model to be effective; histones alone have minimal antimicrobial
effects at physiological conditions (47). It is possible that
other histones, histone fragments, and histone-like peptides also
amplify the antimicrobial effects of AMPs and give rise to
antimicrobial synergy.

The mechanism of synergy between AMPs and histones is
due the ability of AMPs to form pores in bacterial membranes,
enabling histones to enter the bacterial cytoplasm (47, 85). Here,
histones inhibit global transcription and reorganize bacterial
chromosomes. Furthermore, histones enhance AMP-mediated
pores that bacteria otherwise would be able to recover from,
leading to reduced cell sizes and increased cytoplasmic leakage
(47). The uptake of AMPs and histones into bacterial cells
elicits an effective antimicrobial response consistent with a
positive feedback loop (47). Importantly, if bacterial intracellular
functions, like transcription and translation, are inhibited, this
could reduce bacterial cell membrane integrity and repair.

Another potential effect of histones is that they may
induce stress on bacterial membranes. This membrane stress
could aid AMPs to more effectively form bacterial membrane
pores. Altered membrane physiology, revealed through scanning

FIGURE 1 | SEM images E. coli that are untreated or treated with H2A, LL-37,

or both. E. coli that are treated with both H2A and LL-37 demonstrate

extensive cellular damage. Scale bars indicate 2µm.
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FIGURE 2 | Model of antimicrobial synergy between AMPs and other AMPs, antibiotics, histones, and other antimicrobials. AMPs form bacterial membrane pores or

disrupt bacterial membranes. This enables the entry of more AMPs, antibiotics, histones, or other antimicrobials into bacteria. As a result, there is loss of bacterial

cytoplasm and disruption of bacterial macromolecular functions. Histones potentially stabilize AMP-induced pores that enable further synergistic antimicrobial activity.

electron microscopy (SEM), suggests that when bacteria are
treated with only an individual AMP or histone, the membrane
largely remains intact (Figure 1). However, the treatment
with both AMPs and histones induces gross cell deformation
and leakage of cytoplasmic contents (Figure 1). The reduced
membrane integrity from the AMP and histone treatment also
inhibits E. coli from maintaining their proton gradient, which
is necessary for ATP production (47). Thus, membrane damage
caused by synergistic combinations with AMPs may lead to lack
of recovery from AMP-mediated pores, rapid loss of cytoplasmic
content, failure to produce ATP, and ultimately bacterial cell
death. In response to histone exposure, the rcs gene responsible
for colanic acid expression is upregulated in E. coli (47). The
bacterial upregulation of colanic acid, which functions as a
bacterial membrane protective capsule, suggests that there is an
active microbial attempt to mitigate potential membrane stress
effects due to histones.

Synergy With Other Antimicrobial Agents
AMPs also synergize with other antimicrobial agents. For
example, silver nitrate and silver nanoparticles can synergize
with PMB and Gramicidin S, enhancing their intracellular
antimicrobial effects in Gram-negative bacteria (86).
Additionally, peptoid analogs of AMPs are known to have
effective and specific antimicrobial activity (87). AMPs can
synergize with peptoids against Gram-negative bacteria (88). The
AMP Galleria mellonella anionic peptide 2 and antimicrobial
enzyme lysozyme are also synergistic against Gram-negative
bacteria (89).

CONCLUSION

The combination of AMPs with current antimicrobial strategies
can produce synergy through a number of distinct mechanisms
(Figure 2). The introduction of antibiotics inside bacteria has
often been a challenge. However, AMPs can address this
challenge by forming membrane pores, thus facilitating entry
of antibiotics into the cytoplasm, where the antibiotics can
bind to their intracellular targets. The combination of AMPs
with antibiotics could thus be an effective antibacterial strategy.
This strategy could limit bacterial resistance because defense
from the multifaceted attack could be significantly more difficult
to achieve.

If the ability for AMPs to synergize with other AMPs or
antimicrobials is a conserved characteristic, then relatively low
doses of each antimicrobial can be used as antibiotic treatments
to exhibit large antimicrobial effects. Lower drug concentrations
might also limit harmful side effects. For example, PMB is now
an FDA-approved and potent last-resort antibiotic; however,
PMB is also highly toxic to the nephrotic and nervous systems
(90, 91). Using PMB in a synergistic antimicrobial combination,
like with indolicidin or histones, would potentially require lower
doses of each antimicrobial agent, potentially reducing host
toxicity, while maintaining effective antimicrobial activity. Since
the production of peptides can be costly, taking advantage of
lower antimicrobial doses needed for synergistic treatments may
also reduce production expenses. If toxicity remains an issue
even with the low doses required in synergistic antimicrobial
combinations, changing amino acids on AMPs has been shown

Frontiers in Medical Technology | www.frontiersin.org 5 March 2021 | Volume 3 | Article 640981

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Duong et al. AMP Antimicrobial Synergy

to have strong effects on synergy (74). Moreover, AMPs that
can synergize with preexisting AMPs in hosts could be especially
potent in vivo, due to the activation of natural AMP release
by the immune system. In innate immunity, humans express
LL-37; therefore, synergies that arise with LL-37, like histones
and protegrin 1, would be especially critical to consider for
antibiotic applications.

Synergistic antimicrobial combinations are promising
candidates that reduce potential bacterial resistance, overcome
preexisting resistance to current antibiotics, prevent host
toxicity, and increase antimicrobial efficacy. Thus, an improved
understanding of mechanisms by which AMPs synergize
with other antimicrobials is necessary. Moving forward, the
synergistic interactions between AMPs and other antimicrobials
will provide promising options to be explored in the development
of new antibiotics.
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