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Abstract: 
Many biological machines function in discrete steps, and detection of such steps can provide 
insight into the machines’ dynamics.  It is therefore crucial to develop an automated method to 
detect steps, and determine how its success is impaired by the significant noise usually present. 
A number of step detection methods have been used in previous studies, but their robustness and 
relative success rate have not been evaluated. Here, we compare the performance of four step 
detection methods on artificial benchmark data (simulating different data acquisition and 
stepping rates, as well as varying amounts of Gaussian noise). For each of the methods we 
investigate how to optimize performance both via parameter selection and via pre-filtering of the 
data. While our analysis reveals that many of the tested methods have similar performance when 
optimized, we find that the method based on a chi-squared optimization procedure is simplest to 
optimize, and has excellent temporal resolution.  Finally, we apply these step detection methods 
to the question of observed step sizes for cargoes moved by multiple kinesin motors in vitro. We 
conclude there is strong evidence for sub-8-nm steps of the cargo’s center of mass in our 
multiple motor records. 
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Introduction: 
 
Biological machines frequently move in a stepwise fashion along a substrate. Such machines 
include the microtubule based motors kinesin and dynein, the actin based myosin motors, 
proteins involved in DNA replication and RNA transcription (which proceed in a stepwise 
fashion along a DNA strand), and ribosomal transcription of RNA into protein. 
 
Since the determination of step size of the kinesin protein under in vitro conditions (1), similar 
methods have been used to examine the step size of other motor proteins including Myosin-V  
and RNA Polymerase (2). More recently, experiments have begun to look at new situations 
where the step-size of cargoes may not be constant. This includes single motors such as 
cytoplasmic dynein (3) and also multiple motors moving a single cargo. In multiple motor 
experiments, there exists a possibility of the motors moving at different times, resulting in the 
center of mass of the cargo moving with observed step sizes smaller than the usual 8-nm for 
kinesin. Alternatively, the motors may move in lock-step. Thus, details of the stepping behavior 
of the center of mass of the cargo can provide insight into the way the motors work together.  
 
Detection of steps can also serve to provide kinematic and thermodynamic information about the 
individual motor. Information on the distribution of step sizes and step times can be used to 
differentiate between different theoretical models of how motors work. For instance, by detecting 
the distribution of step sizes, we can test the hypothesis that dynein works the same in vivo (4) as 
it does in vitro (3, 5). Similar studies can compare kinesin or myosin function in vivo (4, 6) to 
that established in vitro. Finally, as we start to investigate in vitro how motor function is 
altered/regulated by additional factors (e.g. the addition of other motors, the effect of load, the 
effect of MAPS bound to microtubules on motor function, or proteins that directly regulate 
motor function) such measurements can help understand how the combined system is 
functioning. 
 
Given the utility of such step detection, what are the challenges? As the standard deviation of the 
noise increases to match the step size observed, detection of steps becomes progressively more 
difficult. While averaging can theoretically help, there are limits to how much it improves such 
studies. One popular method (7) has been picking out steps by eye. The human eye is quite good 
at pattern recognition (including step detection), but there are two issues which make it 
troublesome for step detection. First, this approach is subject to user bias. Second, high speed 
camera or quadrant photodiode detectors observing physiological speeds of motion can easily 
produce data sets containing potentially hundreds of steps, leading to extremely prohibitive times 
for manual analysis. Finally, it is important to either keep or ignore entire records rather than 
‘cherry picking’ portions. Picking only the steps that are clearest for deeper analysis can skew 
the observed distribution of sizes in either direction depending on the observer:  larger, because 
the clearest steps will often be the largest (as they rise the highest above the background noise) 
or smaller, because large steps are often assumed to be “multiples” and are therefore ignored. 
 
Thus, we are interested in methods that can analyze long records of processive stepwise motion, 
detect stepping events, and determine their magnitude. As such, this paper is not concerned with 
various methods which are intended to deal mostly with changes between two states. A survey of 
some of these methods may be found in Knight et al. (8). The pairwise distribution function 
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(PDF) (9) has been much used in this field (1, 4, 10-12), but is not suitable for applications 
where a variable step size is expected, particularly when we seek to know the distribution of step 
sizes found. Pairwise distances will always include a large number of double step (and higher) 
magnitude events, meaning that the strength of a particular peak is not proportional to the 
number of steps that have that size. For this reason we excluded the PDF from our analysis. We 
have also excluded methods that make assumptions about the underlying process (e.g. 
Markovian). See (13) and (14) (Milescu et al.) for information on a Markovian based method of 
step detection. 
 
The methods we considered here are: velocity calculation and thresholding (specifically as 
described by Hua et al. (15)), two sample student’s t-test (similar to that described by Carter et 
al. (16)), wavelet transform multiscale products (as described by Sadler et al. (17, 18)) and a chi-
squared reduction method (described by Kerssemakers et al. (19)). This analysis would be 
incomplete without consideration of various filtering techniques which has been applied to step 
detection in the past. We thus examine the effect of mean filtering, median filtering as well as the 
nonlinear filter described by Chung  and Kennedy (20) and used by (4).  
 
Much of this analysis was motivated by the study of transport along filaments with known repeat 
size. Since motors move along these filaments, repeatedly binding at identical sites along the 
filament, we expect step sizes of single motors to be integral multiples of the typical repeat 
length. For the case of microtubules, the tubulin dimer size is 8-nm. Thus, much of our analysis 
was not focused on differentiating between steps that are very closely separated, but rather on 
differentiating between steps that are different multiples of the expected lattice spacing. The 
simulated data used here to test the methods focused predominantly on determining the ability of 
the different methods to detect the relative frequency of the expected 8-, 16- and 24-nm steps of 
dynein. We also considered the case of two motors functioning together, when the center of mass 
of a cargo could move in smaller steps. For instance, if two kinesin motors are moving a cargo, 
and do not move in lock-step, one might expect the cargo’s center of mass to move 4 nm, half of 
the step-size of the individual motors 8nm steps. We discuss the challenges to 4 nm step 
detection stemming from the high stepping rate and the high noise in the real system. We show 
that even in the presence of significant noise, we can infer the presence of such steps by 
examining the shape and peak location of the histogram of step sizes. 
 
While we focused specifically on relative performance of the step-detection algorithms against a 
staircase type function (processive motors), these results may hold for the situation of transitions 
between two states, and so may be applicable to two state (on/off) results as observed in single-
channel and some myosin experiments. 
 
By comparing several methods we hope to establish a base for making informed decisions when 
considering the issue of step detection, particularly in those situations where steps are not 
expected to be of uniform size. In our comparison we seek the answers to these questions:  

• How do the methods respond to variations in key parameters: levels of noise, velocities, 
and step magnitudes?  

• What are the limitations of current methods?  
• Is any one method significantly better?  
• Do different approaches excel at different aspects of the problem? 
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Materials and Methods: 
 
Taxol-stabilized microtubules were prepared as previously described (3). Kinesin assay was 
prepared as previously described (21). Data was acquired as described in (21) with custom 
software and procedures as described in main text. 
 
 
Filters: 
 
Windowed Mean filter (mean filter): the window consists of the current point of interest and r 
(rank) points before and r points after this point. The value at the current point is replaced with 
the mean value of the points in the current window. 
 
Windowed Median filter (median filter): the window consists of the current point of interest and r 
(rank) points before and r points after this point. The value at the current point is replaced with 
the median value of the points in the current window. 
 
Chung and Kennedy Nonlinear filter (CK filter)(20): The method has three parameters, K, M and 
p. We attempted to optimize these settings for our datasets. Overall, best performance was 
achieved with K=5, M=5, p=3. These optimized settings and the settings used by Nan et al. (4) 
(K=5, M=10, p=10) as well as values in between were tested. Our values were found to perform 
best on our benchmark datasets, and appear throughout this paper. 
 
Step Detection Methods: 
 
Two Sample Students’ t-Test: As described by Carter and Cross (16). For each data point, N 
points before and after the point are compared by the two sample Student’s t-test:  
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where N is the number of points in each sample, s1, s2 are sample variances and x1 and x2 are 
the sample means . Unlike Carter and Cross, we calculate the probability of observing a 
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Steps are found as downward peaks (forward step) or upward peaks (backward step) in the P(t) 
record. Periods between steps are scored as pauses and the difference between the means of 
successive pauses are recorded as the step size. We compare this approach with the Carter-Cross 
approach in the supplement (Supplement Figure 1). To summarize, we found the two 
implementations of the t-test method had similar performance, provided filters were used with 
the Carter-Cross t-test method. 
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Velocity Threshold (VT): A number of velocity thresholding methods have been described; we 
use a method described in (15). In the original description, a median filter is used before any 
other calculations. In our implementation, we have considered a wider range of pre-filtering 
approaches (see above). The first derivative by quadratic convolute (the velocity) is found by 
first using a Savitzky-Golay filter of order 2 to fit the data and then dividing by the time between 
frames. The specific implementation of the Savitzky-Golay filter used here is a LabVIEW (22) 
implementation of the one found in (23). The number of points used by the Savitzky-Golay fitler 
we refer to as the window size and is equal to 2N+1 where N is the number of points used to 
either side of our central point of interest. Beginnings and endings of steps are identified by the 
crossing of a velocity threshold. Periods between steps are identified as pauses, and the 
difference between mean positions during the pauses give the step sizes. 
 
Chi-squared minimization method (Chi2 method): This method, created by Kerssemakers et al. 
(19) is based on a chi-squared minimization. To summarize, the method identifies the most 
prominent step in the record and partitions the data at the identified location. The algorithm 
proceeds iteratively until the specified number of steps is identified. The authors of the method 
also introduced a parameter S which is the ratio of the chi-squared of a counter fit (where all the 
steps are selected to occur in the plateaus of the best fit) to the chi-squared of the best fit. In 
effect, S is a measure of quality of step identification. Low values of S occur either when the fit 
is not close enough or when the algorithm fits the data too closely (mistaking noise for steps). A 
peak in S parameter occurs when the number of steps identified is close to the number of steps 
occurring in the data. Details on its implementation may be found in appendix 3 of (19). Here we 
use their Matlab (24) implementation. 
 
Derivative of Gaussian Wavelet (dG wavelet): Discrete wavelet transform is calculated using the 
derivative of Gaussian wavelet. The method used is the MZ-DWT as implemented by Sadler et 
al. (17, 18). 
 
Generation of Benchmark Data: 
 
The testing methodology used in this paper is to use artificial data sets which closely mirror 
typical experimentally obtained records. The advantage of such an artificial benchmark is that we 
know all underlying parameters (temporal position and size of steps) and therefore can 
quantitatively compare this a priori knowledge with the output of step detection algorithms (a 
posteriori results). 
 
The simplest behavior of kinesin, observed under condition of low ATP, is that there is a single 
rate determining step leading to simple Poisson stepping behavior (10). Under conditions where 
ATP is not limiting the stepping rate, the motion of kinesin has two rate determining steps. In 
principle, the more rate limiting steps there are, the more ‘regular’ the stepping, so that there is a 
decreased likelihood of two steps occurring within a very short time. In practice, the effect turns 
out to be small; noise and other factors such a frame rate and averaging have a much larger 
effect. A brief investigation of the difference in performance for simulated data with one and two 
rate limiting steps is provided in the supplement (Supplement Table 1 and Supplement Figure 2). 
As expected, the performance does improve slightly when there are two rate determining steps, 
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since this reduces the incidence of very short times between steps. We therefore believe that the 
single rate determining step represents worst-case method performance.  
 
In general, we must account for the fact that for low data acquisition rates, multiple steps may 
occur in a single low speed data sample. Therefore we first constructed a high speed data stream 
for a simple Poisson stepper. Times between steps are randomly chosen from under a decaying 
exponential distribution (the decay constant of this distribution is equal to the mean velocity 
divided by the step size). The times between steps are rounded to 0.1 ms and then used to 
construct a 10,000 frame per second (FPS) position vs. time record. In order to better emulate 
real stepping, our steps occur over an extended period of 0.2 ms. We chose this amount of time 
because it is on the order of the time reported for steps to occur in vitro (16). The resulting high 
speed position versus time record is then split into segments based on the desired frame rate. The 
positions within each segment are then averaged simulating the action of a camera (for instance, 
averaging 100 frame-long segments would produce 100 FPS final data stream). Finally, Gaussian 
white noise (25) with a selectable standard deviation was added to create noisy records which 
were then analyzed with the different step detection algorithms. To indicate the amount of noise 
added, we refer to the size in nanometers of the standard deviation, i.e. SD5 (or SD 5 nm) means 
we have Gaussian noise with a standard deviation of 5 nm.  
 
Determining performance with different amounts of noise: 
In order to gauge which methods in general perform best, we used several 30 FPS datasets with 
200 8-nm steps and a mean velocity of 10-nm/s. Gaussian noise was varied between SD1 and 
SD5. We estimate the minimum noise observed in our single and multiple kinesin experiments to 
be on the order of SD3 nm. Under conditions of low load, noise may be on the order of SD7 to 
SD8, with noise being reduced as the distance from the center of the trap increases. Note that we 
have used SD1 to SD5 levels of noise in step detection tests precisely to span the range between 
idealized low noise limit and realistic high noise data. 
 
Determining performance with variable frames per step: 
In order to explore how frame rate and velocity affect step detection we generated datasets with 
200 8-nm steps at variable mean velocity (between 10-nm/s and 600-nm/s) and fixed frame rate 
(1000 FPS). We also tested step detection for fixed velocity (50-nm/s) but variable frame rate (30 
FPS to 1000 FPS). Both datasets had a noise of SD3 added. If the velocity is raised at a fixed 
frame rate then fewer samples occur between steps. Lowering the frame rate at fixed velocity 
also results in fewer samples between steps. These parameters have similar effects, and it proves 
most sensible, therefore, to think about the mean number of samples (frames) between steps 
when examining the performance of step detection methods.  
 
Determining performance for variable step size: 
For variable step size testing, some slight modifications were made to our general procedure. The 
size of each step was chosen randomly. The probability of a given step size being chosen is set in 
advance. For instance, to produce a record with roughly equal numbers of 8-nm and 16-nm steps 
we fix the chance of occurrence of each step size at 50%. 
 
As mentioned above, the decay constant of the exponential distribution from which we choose 
times between steps is the ratio of mean velocity and the mean step size. Here, we use the 
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effective mean step size, so that each step magnitude is weighed by the relative likelihood of its 
occurrence. In the example above (50% 8 nm, 50% 16 nm steps) the effective mean step size 
used for calculating velocity was 12-nm. All our mixed step datasets were 200 steps with a mean 
velocity of 10-nm/s and 30 FPS and a noise of SD5. 
 
Metric:  
 
To compare the results for the different methods, we need a common set of criteria with which to 
judge them. Ideally, we are searching for a method that finds the maximum number of a priori 
steps with the minimum number of false positives. It is also important to minimize blurring 
nearby steps together particularly for extracting rate information from the stepping record. For 
our simulated records, we know exactly when each step occurred, and its size, and can therefore 
score a posteriori steps for accuracy in size as well as examining how often nearby steps are 
located together rather than singly. 
 
When we look for steps, there are three concerns (illustrated in Supplement Figure 3): First, if a 
step occurred in the data record, did we in fact detect it (either as a standalone step or blurred 
together with other nearby steps)? The parameter that measures this is henceforth called “percent 
found”. Second, from our program, we are going to receive an output of putative steps. How 
many of those a posteriori steps are correct, that is, reflect a priori steps? The parameter that 
measures this is henceforth called “percent correct”. Third, our methods typically look for a step 
in a given temporal window, but in some cases multiple steps in the actual data occur in that 
window. For instance, consider a case where there were 2 a priori steps in the window. If the 
program reveals a single a posteriori step whose magnitude is the sum of those two individual a 
priori steps, it will be doing as well as can be expected, and these steps will be identified as 
correct as far as the “percent found” and “percent correct” measures. However, we would also 
like a measure of how many of the steps detected correspond to such “fused” steps. For our 
benchmark datasets that have only 8-nm steps, we can measure the fraction of correct a posteriori 
steps whose size is found to be 8 nm (±3 nm). This is reported as the third parameter, “percent 
8’s”. This parameter is thus a measure of a method’s ability to individually resolve nearby steps. 
 
The analysis of the Chi2 method is slightly more complicated as it is not intrinsically a 
windowed method, and its output format differs from the other three methods. Specifically, the 
Chi2 method does not report a time window for when a step occurred, but rather the exact time 
when the step happened. Directly comparing its reported step time and step size proves 
problematic as the step time may be off by a few frames from the correct time. Since the other 
methods are allowed to have the step time wrong by the size of their window we decided to 
allow the Chi2 method a similar leeway. We construct windows around each a posteriori step, 
allowing two points to either side. Any windows which overlap are then combined. This results 
in a 5 point window centered on each a posteriori step. 
 
Stepping in vitro: 
 
The in vitro kinesin assay was prepared as described in (21) with an ATP concentration of 1 mM. 
Under these conditions ATP is not limiting the stepping rate. A custom LabVIEW program was 
used to bring a bead into contact with a microtubule and subsequently follow the beads motion 
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by moving the piezoelectric stage to keep the bead within 150 nm of the trap center in order to 
allow detection of the bead’s position using the quadrant photodiode. The linkage compliance for 
single and multiple motors were found separately as in (1). ATP driven motion was captured at 
20,000 samples/second then decimated into 10 samples segments that were averaged to produce 
a final 2000 sample/second record. 
 
Results: 
 
Setting of User Chosen Method Parameters:  
Each of the methods examined has one or more parameters which must be set by the user. The 
Chi2 method has one parameter, the number of steps to be reported, and a built in graph (S vs. 
number of steps) which provides guidance in setting the parameter (sample in Figure 1a). The 
wavelet method has two user-settable parameters – the number of dyadic scales to be examined 
and a threshold value. Similarly, the VT and t-test method have two parameters – window size 
and a threshold value. For wavelet, VT, and t-test, the parameters influence each other, so the 
threshold value is affected by window size (or dyadic scale size in the case of wavelet).  
 
There is an inherent tradeoff between noise resistance (resulting from a greater number of points 
within the window) and decreasing ability to separately identify closely spaced steps. Ideally, we 
wanted to compare the best performance that each method had to offer so we used our a priori 
knowledge of step positions and sizes to optimize the window size parameter for each method. It 
also proved possible, for most methods under most conditions, to reproduce the ideal window 
sizes we determined with a priori knowledge by examination of the number of steps found vs. 
threshold value. See below and Supplement Figure 4 for a description of the procedure we used. 
 
The best window size was determined for VT, dG wavelet and t-test by finding the window size 
that gave the highest mean of % found, % correct and % 8’s. Figure 2b, Supplement Figure 5b 
and Supplement Figure 6b illustrate the results (mean and SD of results for measurements 
against 3 sets of 200 steps). 
 
The Kerssemakers paper (19) contains suggestions on using the graph of S vs. number of steps 
(Figure 1a) to set the expected number of steps, recommending the value just beyond where the 
peak in S occurs. In our tests, little change in algorithm performance is observed for a fairly large 
range of expected number of steps near the peak S value (Figure 1b).  
 
We attempted to find a repeatable ‘best’ way of setting the threshold for t-test, VT and wavelet 
methods, to be used when a priori information was lacking. If steps are typically distinct from 
noise fluctuations then we expect that the number of a posteriori steps detected will vary only 
slightly near the “optimal” threshold value. We therefore swept the threshold value and 
determined the total number of a posteriori steps and looked for a plateau in the observed 
relation. One complication of this optimization procedure is that the best threshold value turns 
out to depend on window size.   
 
Examples of this threshold sweep procedure at various noise levels are shown for the VT method 
in Figure 2a. For the VT method, the best threshold values are indeed found in the region where 
the total steps vs. threshold flattens out. Best results are usually obtained closer to the minima of 
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this flattened region. Note that this flat region is almost non-existent for SD5 noise, making 
selection of a threshold value very difficult.  
 
Similarly, for the wavelet algorithm whose total step vs. threshold graph looks similar to the VT 
graph (Supplement Figure 5a), the best threshold values are found where the plateau occurs in 
the graph of total steps vs. threshold occurs. The flat region erodes more quickly with noise for 
the wavelet method than it does for the VT method, making setting of the threshold level even 
more difficult.  
 
Curiously, for t-test, the optimal threshold setting is slightly less restrictive than the value 
inferred from where the plateau occurs. The graph for t-test appears in the supplement 
(Supplement Figure 6a, plotted so less restrictive thresholds appear on the left).  
 
Comparison of methods with variable noise: 
Each method was optimized as described above and tested against three separate datasets with 
increasing amounts of Gaussian white noise added. The mean and standard deviation of the % 
found, % correct and % 8’s were calculated and are plotted in Figure 3.  
 
First, let us investigate algorithm performance ignoring the temporal resolution (% found and % 
correct measures shown in Figure 3a and 3b respectively). All methods show excellent 
performance at low noise levels. However, at the highest level of noise tested, t-test had the best 
overall response followed closely by Chi2 (VT and dG wavelet methods being the worst). Once 
we factor in a measure of temporal resolution (% 8’s shown in Figure 3c), the overall picture 
changes. Here, the methods break broadly into two categories: wavelet and Chi2, which do a 
better job discriminating nearby steps, and VT and t-test which do distinctly worse. 
 
A more detailed look at the distribution of step sizes found appears in Supplement Table 2. In 
general, it bears out what Figure 3c implies: dG wavelet and Chi2 methods are more efficient at 
discriminating nearby steps. It also shows with greater detail that larger window sizes/dyadic 
scales cause decreased ability to discriminate nearby steps. 
 
Results for test datasets with filters applied: 
As a next step, we examined if any additional factors could be used to improve method 
performance. Filtering is a traditional method of improving response in noisy conditions, and the 
VT method was originally described (15) with a median filter used before the derivative. We 
tested each of the four methods (using the best window size determined above, and with the 
threshold determined as described) with one of three filters in place (mean, median, and the 
Chung-Kennedy (CK) nonlinear filter) and the results, organized by step detection method, 
appear in Figure 4. 
 
Most methods perform better with a mean filter applied. For t-test, filtering provides mixed 
results - percent correct rises, but the percent found drops. In the end, we decided to use no filter 
with t-test as any improvement is not statistically significant. It is interesting that the 
sophisticated CK nonlinear filter does not perform any better than the simple mean filter in our 
tests. It does not erode edges as much as a mean or median filter, however it has a tendency to 
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reinforce sudden large jumps resulting from noise, even as it eliminates the small jumps due to 
noise, making noise appear more step-like.  
 
For methods positively affected by mean filtering (dG wavelet, Chi2, VT), the filter decreases 
the frequency with which noise is identified as steps. The VT method has the largest 
improvement (see Supplement Figure 7). The decrease in the number of false positives is 
immediately clear (Supplement Figure 7a). There are no obvious changes to the histogram of 
steps identified as correct (Supplement Figure 7b). 
 
With the best performing filter in place we find that the Chi2 method has the best overall 
performance. We again compare the % Found, % Correct and % 8’s (Figure 5). VT, t-test and 
the Chi2 method have very similar % Found and % Correct values. The Chi2 method and dG 
wavelet do a better job finding individual 8-nm steps than t-test and VT. The Chi2 method 
performs the best for this reason – it has similar performance to the VT and t-test methods for % 
found and % correct, but its temporal resolution is better and it exceeds their performance on % 
8’s. Even with filters applied, dG wavelet is a poor performer, although its performance has 
improved considerably from the no filter case.  
 
For a more detailed examination of temporal resolution of various methods with filters in place, 
see Supplement Table 3. Comparing Supplement Table 3 to Supplement Table 2 shows that 
filtering disturbs the step size distribution, moving it further from the ideal (as expected, larger 
filtering windows generally result in more blurring together of nearby steps). Here, the Chi2 and 
dG wavelet methods have better performance than the t-test and VT methods. 
 
Best Performers: 
Based on the above results, the Chi2 method (with data preprocessed by a mean filter) seems to 
be the best overall performer. Moving forward from here, we will focus on the performance of 
the Chi2 + mean method. Results for the VT method appear in the supplement for comparison. 
 
Velocity/Frame Rate Effects:  
What happens to detection of steps as the velocity rises at a fixed frame rate? Conversely, what 
happens as the frame rate is increased for the same velocity? Are the changes in number of steps 
detected linear? The first two questions are interrelated, and increasing the frame rate at a 
constant velocity is the same as lowering the velocity at a constant frame rate. By using a 
common measure, frames per step (which is the result of multiplying the frame rate by effective 
step size and dividing by the velocity) we get the results plotted in Figure 6 (VT in Supplement 
Figure 8). 
 
Figure 6 shows the relative performance of the Chi2 method, with and without the mean filter, as 
the number of frames per step increases. We observe a rapid increase in detection of 8 nm steps 
with increasing frames per step followed by a plateau where the optimal result is approached. At 
16.3 frames per step the Chi2 method is able to identify nearly half of all steps as singles. 
Different filter strengths work best at different frames per step (see comparison in Table 1). 
Strangely, performance falls off at high (near 782 and above) frames/step. Close examination 
revealed that the Chi2 method was still detecting the steps, but was placing them more frames 
away from the correct position than our window would accept as correct. The exact cause is 
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unclear, but seems to be related to the length of the record, as splitting of the 782 frame/step 
record into two parts improved method performance. Interestingly, this performance falloff was 
not observed for a long record with evenly spaced steps. We would therefore recommend 
keeping records under about 100,000 frames in length, as this improved performance in the cases 
we have tested. 
 
Performance when the sample contains a mix of step sizes: 
We created several records with mixes of 8 and 16-nm steps with SD5 noise (100% 8’s, ~80% 
8’s, ~60% 8’s, ~40% 8’s, ~20% 8’s, and 0% 8’s) and examined the resulting distribution of 
correct a posteriori steps (Figure 7, VT in Supplement Figure 9). For each case, we found 
expected performance (assuming 4 frames of separation between steps for clear detection). The 
change in step distribution is clearly observable. These changes do not result in a simple 
proportional change to the step distribution (that is, 40% 8’s vs. 60% 8’s does not result in a 20% 
drop in detected 8’s and a 20% increase in detected 16’s) due primarily to two factors: 1) the 
combination of nearby steps resulting from windowing and 2) missed steps due to noise. A mix 
of 33% each of 8’s, 16’s and 24’s is also clearly distinguishable from mixes of 8’s and 16’s. For 
all of these data sets, velocity was 10-nm/s and frame rate was 30 FPS. This velocity to frame 
rate ratio was sufficient for good detection of single steps. Note that (per Figure 6) this is 
equivalent to 300 FPS for a cargo moving at 100 nm/s; for a cargo moving 1000 nm/s we would 
need 3000 FPS. 
 
Up to this point, we have determined the step distribution using our a priori knowledge of where 
steps occurred. In a real situation, the distribution of step sizes would need to be determined by 
some other method, such as fitting of the peaks in the histogram of detected steps with multiple 
Gaussians. Figure 7e shows that this is feasible for an approximately even mix of 8-, 16-, and 24-
nm steps (72 steps, 65 steps, and 63 steps respectively). By estimating counts under each 
Gaussian, we find approximately 53 8’s, 54 16’s and 57 24’s. Some of the ‘missing’ steps may 
be found as higher order combinations. 
 
A real-life Example: Steps observed for beads moved by multiple kinesin motors: 
Recently, our lab has been investigating how multiple motors work together (21, 26). We have 
found that for low numbers of motors, stalling forces are approximately additive, and that the 
mean travel of a cargo moved by multiple motors is much larger than for a cargo moved by a 
single motor. As we try to understand the ensemble function of the multiple motors, one question 
is how they work together—do they step in unison, or independently? One way to approach this 
question is to look at displacements of the center of mass of a bead moved by 2 motors. If the 
motors step in unison, the center of mass should move 8 nm at each step, whereas if the motors 
step independently, we might expect the center of mass to move 4 nm (when one motor steps 8 
nm, and the second does not). In particular, we want to know how the motors step under 
approximately ‘physiological’ conditions—that is, at ~1 mM ATP, and not heavily loaded down, 
so that the cargo’s mean travel speed is greater than 100 nm/sec. To achieve this, we cannot use 
strong opposing load to slow down the motors or to damp their thermal noise. Because of this, 
we are faced with the technically challenging question of investigating 4 nm vs. 8 nm steps at 
high stepping rate, in the presence of high thermal noise. 
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To gather experimental data, we performed experiments on beads moved along a microtubule by 
either a single kinesin (as determined by having a binding fraction of <0.4) or by multiple 
kinesins (all beads can bind to microtubules and move multiple microns). For the particular 
kinesin concentration used, our past studies (21) indicate that moving cargos are most often 
moved by 2 motors, so we believe that a significant fraction of the stepping events we observe 
correspond to the movement of a cargo driven by two motors. We do expect that the cargos will 
occasionally be moved by either 1 or 3 motors and the resulting displacements are present in our 
datasets. Because of the high rate of stepping, we needed to use the quadrant photodiode to 
detect the bead’s position (with a 2 kHz temporal resolution) instead of using video microscopy. 
To do this, we implemented a crude repositioning system, moving the piezo-controlled stage to 
follow a moving bead, and keep it in the trap. The bead was kept between ~30 and ~130 nm from 
the center of the trap; this resulted in the load experienced by the beads varying from about 1 pN 
to a single kinesin stall force of 5 pN. 
 
We then examined the position record produced by the beam position detector for steps in each 
case (Figure 8). Since we were trying to distinguish between close step sizes, accuracy in step 
location was critical. This requirement favors Chi2 and dG wavelet methods (Figure 5c). We also 
estimate that the noise in our data was at least SD3 (see below). In this case, the Chi2 method is 
preferable to the wavelet method since it is less sensitive to noise (Figure 5b). Moreover, in this 
case no a priori knowledge was available so that setting thresholds for the wavelet, VT, and t-test 
methods was far more difficult, time consuming, and ultimately ambiguous than setting the 
number of steps in each record based on the S parameter guidance (Table 2). 
 
The average step sizes obtained via the Chi2 step detection method were statistically distinct: 7.6 
± 3.3 nm for multi-motor and 9.0 ± 3.6 nm for single motor (mean ± SD; either the 2-sample t-
test or skewness insensitive 2-sample rank-sum test give p<0.0005). We calculated the skewness 
of the single and multiple motor distributions to be -0.02 and 0.12 respectively (Bowley 
skewness (27), zero for normal distribution). These findings lead us to conclude that beads 
moved by single and multiple kinesin motors move in different ways. For the multiple-motor 
driven beads, the steps were smaller than the expected 8 nm, but there was no clear peak of 4 nm 
steps. Sample tracks with Chi2 fits appear in Supplement Figure 10 (adjusting position for 
linkage compliance).  
 
To interpret this difference, we looked at a variety of simulated data under different assumptions, 
to determine which classes of models could give rise to what we observed. In order to effectively 
compare experiments and theory, we needed to evaluate the amount of noise present. The 
effective noise was not constant. The noise is difficult to exactly measure for moving beads close 
to the center of the trap, but we estimate it to be about ~SD7 for single motor case and ~SD5 for 
multiple motor case. At high load, (examining portions of the record where the bead was 
apparently stationary) we measure the noise to be ~SD 4.4 nm for a single motor beads, and ~SD 
3.6 nm for the multiple motor beads. The ‘average’ noise is therefore above SD3, and below 
SD7. 
 
We generated simulated data consisting of all 8-nm steps, various combinations of 4- and 8-nm 
steps, and all 4-nm steps, added different amounts of noise (noise levels from SD4 to SD6), and 
then analyzed the resulting data sets exactly as we had analyzed the real experimental data. As 

 12



expected, regardless of the noise used (up to SD6), the simulated 8-nm only histogram matched 
the experimental single-motor bead data quite well (compare Figure 8a to 8c). However, almost 
all combinations of 4- and 8-nm, regardless of the added noise, did not match the multiple-motor 
experimental histogram—in each case, either the distribution peaked at 8-nm, was double peaked 
at about 4- and 8-nm, or was flat from 4- to-8 nm, instead of showing a sharp rise at about 3.5-
nm, peaking at 6.5-nm, and then a gradual decline (some examples in Supplement Figure 11).  
 
The only simulated scenario we tried that generated a histogram similar to the experimentally 
measured one was to assume all 4-nm steps, in the presence of ~SD6 noise (compare Fig. 8b to 
8d). Both histograms are skewed, have the same sharp rise starting at about 3.5-nm, peak at 
about the same location (~6.5-nm) and then gradually decline. The key observation then is that 
the experimentally observed histogram is not consistent with the all 8 nm steps hypothesis but 
can arise if the cargo center of mass moves in 4-nm steps. We note that the magnitude of noise 
used above (SD6) is higher than typically observed in multiple motor assays, suggesting that our 
experimental data may reflect a more complex scenario. For instance, the center of mass of the 
bead may be moving with variable sub-8-nm steps centered on 4 nm, with occasional 8-nm steps. 
Crucially, these more complex assumptions are generally consistent with the hypothesis that the 
activity of individual motors is uncorrelated. We can thus safely conclude that when kinesin 
motors move at saturating ATP under low to moderate load, they do not move in lock-step. 
 
 
Discussion: 
 
On selecting parameters for best performance: 
Proper setting of the parameters is a difficult problem. For the VT and dG wavelet methods we 
have 3 parameters (2 for t-test, since filtering does not improve performance) to determine – 
window size, threshold, and filter rank. All of these parameters are linked – raising filter rank 
can lower the window size needed for best performance – both of which may cause the best 
threshold level to change. Given a selection of filter rank and window size it may be possible to 
select the best threshold using a graph of total steps detected vs. threshold (see Figures 2 and 
Supplement Figures 5 and 6), although this becomes impossible at higher noise levels. 
 
We have developed a ‘sweep’ method that makes it possible to select a ‘best’ window size, using 
either plots of number of steps vs. threshold for multiple windows (selecting the one where the 
plateau is most clear, see Supplement Figure 4) or the use of a simulated dataset with similar 
properties to the dataset to be analyzed as options for setting these parameters. Generalizing our 
choices made here using simulated data, larger windows work better for datasets with lower 
mean velocity and filtering allows the use of smaller step-location windows than would be 
optimal with no filter. 
 
Relative to these other methods, the Chi2 method has a distinct advantage: it has only two 
parameters to set—the expected number of steps and filter rank—and there is a straightforward 
way of deciding what value should be used for the expected number of steps. Additionally, while 
the Chi2 method benefits from filtering, it appears (Figure 6) that high levels of filtering are 
generally undesirable, somewhat simplifying decisions on what filter rank to use. For the Chi2 
method we can show that with modest (SD3) noise, if one selects more steps than are actually 
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present but then combines nearby steps, one gets good step detection results. This indicates that 
the method has a tendency to split steps that are actually there when ordered to find too many 
steps. So, provided we expect most steps to be well-separated, we can combine close steps to get 
a better record. Therefore, our process for adding a window (5 frames for all but the kinesin 
analysis, where we used 11 frames, based upon testing with a stuck bead moved in 8-nm steps by 
a piezoelectric stage) has a practical value beyond allowing us to compare it with the other 
methods. With this low ‘window size’ the Chi2 method was still as good at resisting noise and 
finding steps as the VT and t-test methods using larger window sizes. This smaller window size 
is partly responsible for the Chi2 method’s superior performance in finding single steps. We note 
that for extremely long records (>100,000 frames), the Chi2 method has decreased performance. 
Specifically, there appears to be increased ‘jitter’ in the temporal location of steps. This 
performance drop-off can be compensated for by increasing the window size. However it may be 
advisable to split the data sets into smaller segments instead since no analytical method has been 
found to aide in setting window size.  
 
From our sample data we see a few trends. The VT and t-test methods % found and % correct 
were fairly insensitive to the window size, as measured by overall performance, although larger 
windows will lead to loss of temporal sensitivity (see Figure 2 and Supplement Figure 6). For 
these two methods there is a balance point where improvement to % found and % correct due to 
larger window size is offset by the decreased temporal sensitivity. For the dG wavelet method 
(Supplement Figure 5), there was an optimal dyadic scale – on either side of which performance 
slowly falls off (particularly % correct and % 8’s, indicating a loss of temporal sensitivity and a 
greater vulnerability to detecting noise as steps). Finally, the Chi2 method performance is fairly 
flat, given that nearby steps are combined as described above and that the number of steps it is 
ordered to find is within about 10% over the peak value in the S vs. number of steps graph (see 
Figure 1).  
 
Choice of filter and positives and negatives involved with their use: 
The performance of the examined methods is often improved by applying some form of pre-
filtering (t-test method is the notable exception). The mean filter was found to be most beneficial 
with the CK nonlinear filter usually being a close second. Filters do have one negative effect - 
they decrease the ability of methods to separately identify closely spaced steps (see Supplement 
Tables 2 and 3). In general, when there are on average more frames between steps higher filter 
rank is beneficial (e.g. for the VT method, mean filter of rank 2 is best at low frames/step, but at 
782 frames/step a mean filter of rank 6 is more appropriate – data not shown). The exception is 
the Chi2 method, for which it is generally best to keep the filter power low, even at high numbers 
of frames between steps. 
 
Finding individual steps: what can realistically be expected?  
The simplest model of molecular motor function assumes a single rate-limiting step, and thus 
motor stepping can be described by a Poisson process: 
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Where P is the probability that n steps occur in t frames, v is velocity, f is the number of frames 
per second, and s is the step size (28). For a Poisson process, the distribution of wait times will 
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be a decaying exponential (28). This means that the probability of very short times between steps 
can be fairly high. For this reason, there is some real, finite probability of finding more than one 
step in the time necessary for step detection (several frames), or even a single frame. This 
probability can be reduced to near zero for slowly moving motors or for very high frame rates 
(frames per step becomes large), which is hinted at in Figure 6. 
 
Below, and in the supplement, we develop a theoretical description of what can be expected. The 
average number of steps per frame is calculated by dividing the velocity by the product of the 
step size and the frame rate. Since we are not capable of detecting events that occur faster than 
our sample time (time per frame), the equation above is set up to measure time in number of 
frames. If we take t = 1 frame we can calculate the probability of 0, 1, or more steps occurring in 
any single frame. If we had perfect step detection (able to differentiate steps that occurred in 
adjacent frames), this would give the approximate step size distribution observed.  
 
In the supplement, this type of approach is extended to more realistic cases where several frames 
with no motion are necessary to allow differentiation of two steps. Doing so allows us to make 
some quantitative predictions about the step distribution we expect from step detection. For 
instance, as measured directly from the dataset a record with 200 total steps made at 30 FPS, 10 
nm/s with 8-nm steps has a step distribution of 140 single, 25 double, 2 triple and 1 quadruple 
(when steps within 4 frames of another step are merged). The predicted distribution for these 
conditions would be 137.5 singles, 23.5 doubles 4.0 triples and 0.7 quadruple. Reporting only 
steps determined to be correct, the Chi2 method at SD3 finds 130 singles, 20 doubles, 1 triple (at 
this noise level the Chi2 method should find approximately 90% of steps). 
 
This is the reason why ‘cherry picking’ of data is dangerous. If only especially clear steps are 
analyzed we would expect enrichment in double steps, as they will be more likely to rise above 
the noise. Even for relatively high frame/step rates we may still observe 10% (~80 frames/step) 
or more of all steps as multiples, possibly significantly more if we’ve already biased our search 
by only looking at the best. Even at that 10% rate, we may expect to see adjacent doubles 1% of 
the time. Two possible approaches can be taken to appropriately investigate the presence or 
absence of steps with a magnitude different from 8 nm. First, we perform step detection on as 
much of our dataset as possible, with unanalyzed portions being rejected following simple rules 
(e.g., remove regions where the detector is not well calibrated and portions where the motor is 
stalled, etc.). Second, we can predict based on mean velocity and record duration how many 16-
nm steps we would expect to observe if the motor only takes 8-nm steps. Then, if the 
observations lead to a count for 16-nm steps dramatically exceeding these expectations (exact 
amount would depend on the number expected since the process is stochastic) it may be valid to 
say the motor is taking 16-nm steps. 
 
Naturally, we can use this approach in reverse to plan experiments, and also to help interpret 
observations. For instance, if we believe we are dealing with a single motor which acts as a 
simple Poisson stepper, then given the maximum velocity typically reported for in vivo motors 
(1000-1500 nm/s (29) , 1500 nm/s used here), an assumed step size (constant 8 nm used here) 
and presuming we want at least 67% of all steps to be ideally detectable as singles, we can 
predict we would need a frame rate of approximately 1500 FPS. Similarly, to detect 80% singles 
requires about 2500 FPS. We would need about 10,000 FPS before we would reasonably expect 
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to be able to detect 95% of all steps as singles. It is therefore perfectly natural that in any realistic 
data set some multiples of the motor step size will be observed. The significance they have is 
entirely in the relative percentages. 
 
Detecting variable step size: 
Generally, if the number of detected (a posteriori) 16 nm steps changes between an experiment 
and a control by some percentage, this does not imply an equal percentage change in the number 
of a priori steps (misdetection due to noise and blurring together of nearby steps is mostly to 
blame). Figure 7 reveals however that it is indeed possible to detect the presence of 16-nm steps 
in a background of 8’s, or even of 16-nm and 24-nm alongside 8-nm steps. While differences 
between e.g. ~40% and ~60% 16’s may be difficult to quantify, the difference between 0% 16 
and as little as 20% 16’s is very clear.  
 
Detection of steps other than 8-nm multiples in multi-kinesin data? 
The ability of all methods surveyed here to detect 8-nm steps falls off dramatically as noise level 
rises close to SD 4 nm (Figures 3 and 5). Therefore, for good detection of a step, we desire the 
standard deviation of the noise be half the step size or less. This also extends to detection of 
different step sizes – we would need the noise to be at most half the difference in step sizes for 
robust detection. Experimentally, under small to moderate load, our actual noise levels observed 
are approximately SD 5-nm, which makes detection of 4 nm steps extremely challenging. We do 
however expect the step size distribution to be disturbed if 4-nm steps are present in sufficient 
numbers.  
 
There was indeed a striking difference between single kinesin and multiple-kinesin driven beads. 
In the former case, clear 8 nm steps could be clearly and frequently observed. In the latter case, 
we observed long stretches of time when motion appeared smooth, presumably because the step-
wise motion of the bead’s center of mass was too fine to be distinguished from noise. Note that 
the asynchronous stepping of two kinesins is expected to displace the bead’s center of mass 4 nm 
at a time. This is close to the noise level in our recordings, which makes clean detection of these 
and smaller steps difficult. Nonetheless, a key difference between the two cases is revealed by 
the histogram of detected step sizes. Histograms for both cases show a single peak but the shape 
of the peak is different and the peak for the multiple motor case is shifted to lower average value. 
Therefore, one clear conclusion from this study is that when the cargo is not close to stall, the 
motors frequently do not step synchronously. We created simulated data sets with 4-nm and 8-
nm steps and examined the histogram of steps identified (Figure 8). We see a significant 
similarity between the measured multiple motor stepping size histogram and the histogram of 
found steps for data simulated to have 4-nm steps and SD6 noise. Additionally, the measured 
single motor histogram and the histogram of found steps for simulated data with 8-nm steps and 
SD6 noise appear similar. Thus, for all possible noise levels in our experiments, the distribution 
of steps found experimentally cannot be explained due to 8 nm steps with high noise, but instead 
reflects the predominant presence of sub-8 nm steps. 
 
While further work will be required to determine the details of how multiple motors function 
together, the small step behavior of the bead’s center of mass observed in vitro already has 
ramifications for in vivo studies of stepping cargos—if the cargo is moved by multiple motors, 
the steps observed in cargo motion records may be smaller than the displacements of each 
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individual motor. Therefore, without knowing the number of motors moving a cargo, simply 
observing a cargo moving in 8 nm steps (7, 30, 31) only establishes that each underlying motor is 
taking at least 8 nm steps. The steps of individual motors may well be larger than 8 nm. 
 
Conclusion: 
 
Most step detection methods examined had similar performance levels. The VT, t-test and Chi2 
methods had almost identical % found and % correct. The Chi2 method was superior for 
temporal resolution however (greater % 8’s than VT and t-test, similar to dG wavelet). The Chi2 
method is easier to set. It only had one parameter (two if a filter is used), the other methods each 
have two parameters (3 if a filter is used). Filters help, but they also tend to add some degree of 
blur between nearby steps, decreasing temporal resolution. A high FPS to velocity ratio (frames 
per step) is important if one is trying to determine if 8- and 16-nm steps are both present in a 
single record (provided certain assumptions about the motor kinematics are met). Given this is 
taken into account, it should be possible to identify when a significant percentage of 16 nm steps 
are present. We also find clear evidence that multiple kinesin motors driving a single bead are 
not forced into lock step under the observed range of forces (less than 5 pN), and future work 
will be required to more fully investigate how multiple motors function together. 
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Chi2 
unfiltered 

Chi2 
mean filter 

Frames/Step 

Rank Rank 
800 NA 2 
160 NA 1 
80 NA 1 
40 NA 1 
26.7 NA 1 
22.9 NA 1 
20 NA 1 
17.8 NA 1 
16 NA 1 
14.5 NA 1 
13.3 NA 1 
9.6 NA 1 
4.8 NA 1 

Table 1: Low filter ranks are optimal for the Chi2 method. Mean filter rank was optimized 
using a priori knowledge for sample data sets (also used in Fig. 6) which had 200 total steps and 
SD3 noise.  
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WAVELET VT T-TEST CHI2 
    

Pre-filter rank Pre-filter rank  Pre-filter rank 
Dyadic scale range Window Size Window Size Step joining range 

Threshold Level Threshold Level Threshold Level Number of steps 
 
Table 2: Comparison of parameters used needed for different methods. For rough guidance, 
the ease with which a given parameter can be optimally set is represented by shading (darker 
shading represents parameters which are harder to set). The more sensitive the method to a given 
parameter, the darker harder it is to set optimally. Note that the easiest parameters to set are the 
number of steps for the Chi2 method (where robust guidance for setting the parameter is 
available) and the dyadic scale range for the wavelet method (since the method is not very 
sensitive to this setting). On the other hand, optimally setting thresholds for the wavelet, VT, and 
t-test methods is difficult, especially when little a priori knowledge about the data is available. 
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Figure Legends 
 
Figure 1: Example of performance of the Chi2 method. (a) The curve of the S parameter vs. 
number of steps at noise SD 3 provides guidance for the optimal pick for the number of steps in a 
record being analyzed. (b) Three performance characteristics are shown for various choices of 
the number of steps (SD 3 noise), combining steps as described in text. Note that the 
performance in (b) is fairly stable over a large region near the peak value of the S parameter 
found in (a).  
 
Figure 2: Example of performance of the VT method. (a) The total steps found in the record 
being analyzed varies significantly as the threshold is increased. The graphs for VT method 
(window of 13) for SD1, 3 and 5 noise are shown. The plateau in the graphs is generally close to 
the optimal choice for the threshold. Note however that the plateau loses its definition at higher 
noise, making setting of the threshold difficult. (b) Three performance characteristics are shown 
for various choices of window size at SD3 noise for the VT method. For each window size, the 
threshold was found following rules described in the text for each of 3 runs and the mean and SD 
are plotted here. Percent Found and Correct remain stable across a wide variation in 
rank/window size. The Percent 8’s decreases with increasing window size. As a result mean 
performance (mean of all 3 parameters) also drops with increasing window size. 
 
Figure 3: Comparison of step detection performance. Three performance characteristics, 
Percent Found, Percent Correct, and percent 8’s are shown in (a), (b), and (c) respectively. Note 
that the dG wavelet method rapidly loses performance as noise level increases. The percent 
found and percent correct are similar for the other three methods (excluding VT at SD5). The t-
test method, unlike the other methods, immediately finds a fair number of false steps as soon as 
noise appears in the signal. 
 
Figure 4: Comparison of step detection performance after data filtering. Three performance 
characteristics are shown for (a) dG wavelet method, (b) t-test method, (c) VT method, and (d) 
Chi2 method. The filters used are indicated in each panel along with their settings (e.g. rank for 
mean and median filters). For the wavelet method, the best performance is found with the mean 
filter. The t-test is better off with no filter applied. The VT method benefits from filtering, with 
the best performance coming from mean filtering. Finally, the Chi2 method benefits modestly 
from filtering with the greatest improvement seen from mean filtering with nonlinear taking a 
close second. Noise level was SD5. 
 
Figure 5: Figure 3 reprised with best filter in place. Here again, Percent Found, Percent 
Correct, and Percent 8’s are shown in (a), (b), and (c) respectively. With best filter in place VT, 
t-test and the Chi2 methods all have very similar percent found and correct. Wavelet is still a 
poor performer when noise gets large, although its performance has improved considerably. 
 
Figure 6: Step detection performance changes as a function of frames per step. Chi2 method 
was used to detect steps in three sample data sets with 200 total 8 nm steps each and SD3 noise. 
Step detection results with and without mean filter applied are shown. All data points represent 
the mean and SD of the results for the three data sets. Mean filter rank was chosen using a priori 
knowledge. 
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Figure 7: Chi2 method detection of 8-16 and 8-16-24 nm mixed step distributions. We have 
used data sets with (a) 100% 8’s, (b) ~80% 8’s (c) ~40% 8’s, (d) approximately even mix of 8-, 
16- and 24-nm steps and SD5 noise to test Chi2 performance. Panels (a)-(d) show the mean and 
SD of three datasets. (e) The results of the Chi2 method for a data set containing 60 8-nm steps, 
56 16-nm steps and 59 24-nm steps were binned to produce a histogram shown (squares). A fit of 
the histogram to a combination of three Gaussians is shown (circles). The fit suggests that ~53 8 
nm steps, ~54 16 nm steps and ~57 24 nm steps were found by Chi2 method.  
 
Figure 8: Detection of steps in experimental and simulated data. Experimentally measured 
cargo motion in single motor and multi-motor assays was analyzed using the Chi2 method and 
histograms of detected steps are shown in (a) and (b) respectively. Note the skewed appearance 
of the multi-motor step histogram. Additionally, 18 simulated runs of 50 steps each with all 8-nm 
steps and all 4-nm steps and SD6 level noise were also analyzed with the Chi2 method. Two rate 
limiting steps were assumed when generating the stepping datasets. Aggregate histograms of 
detected steps for all 8-nm steps and all 4-nm are shown in (c) and (d) respectively. METHODS: 
Taxol-stabilized microtubules were prepared as previously described (3). Kinesin assay was 
prepared as previously described (21). Data was acquired as described in (21) with custom 
software and procedures as described in main text. 
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Figure 5 
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Figure 8 
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