
Appendix to Accompany Snider et al. 
 
Systematic error in velocity: 

 
Figure 1: Cartoon of single particle tracking.  The centers of the circles represent true particle 
positions, and the circles represent the error in the location.  Fixing the left hand point to be the 

center, all points in the region labeled S will have apparent distances less than the true distance while 
all points in L have larger apparent distance.  Since L is larger than S by area, the average apparent 

distance will be systematically too large. 

 Single particle tracking measurements have a systematic error which causes the 
average apparent distance that a particle has moved to be larger than the actual distance. 
This effect becomes more pronounced as the displacement decreases between successive 
positions.   Here we will derive the expression for the systematic error in the 
measurement of displacement in single particle tracking.  As far as we know this 
phenomena is not discussed, but it may have some consequences for high accuracy 
tracking experiments.  With reference to Figure 1 and choosing a coordinate system 
centered at the left circle, all points contained by the two circles are given by 
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where 1 refers to the left circle and 2 the right, [ ] [ ]1,2 1,20,  and 0,2r Rδ θ π∈ ∈ . Then, the 
average distance between two randomly selected points is given by integrals over all 
possible left and right ends. Defining D to be the average distance, the integral is 
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This integral is not solvable in closed form; however, we can pull the R out of the 

integrand and Taylor expand in terms of

R
R

δ
, which is hopefully not too large or else 

other problems will be dominant. When expanding, all terms which contain odd powers 
of sine or cosine can be ignored because the integral over a full period will be zero. To 
second order, the contributing terms are 
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The remaining integrals are trivial and the result is  
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To check that this result is not just a problem with the expansion, we have also 
simulated the situation.  These straightforward simulations entail choosing two circles of 
fixed radii separated by a varying distance R to represent the data points and their error.  
In all cases we choose the radius 1Rδ =  and vary R such that /R Rδ goes from zero to 
one, representative of the relative range.  Note that a /R Rδ =1/2 corresponds to the two 
circles just touching.  Then, the distance between a million randomly selected points in 
each circle is calculated and averaged.  The result shown in Figure 2 shows excellent 
agreement between the calculation and the simulation, although the calculation produces 
a noticeable but slight underestimate as /R Rδ approaches one. 

 
Figure 2: Comparison of simulated and calculated overshoots.  The overshoot factor is the ratio of 

the apparent separation divided by the true separation.  A δδR/R of one half corresponds to the circles 
just touching and has an overshoot of 6.25%. 

 
With this systematic error in mind, we calculate the speed of the cargos by plotting the 
apparent speeds calculated after time spans of 1, 2, ..., 10 frames, where one frame is 7.5s 
here. Then, we correct the speed using equation (1.5) and vary δR until the corrected 
speeds do not depend on the time span of the data. With this, the values for the speeds are 
70 ± 20 nm/s with δR=24 ± 4 nm for aggregation and 80 ± 30 nm/s with δR=20 ± 4 nm 
for dispersion. The values of δR are reasonable for these in vivo systems. 
 
 
 
 
 
 
 
 



Details of the Simulations: 

 
Figure 3: This is a sketch of intersections.  The arrows represent actin filaments.  The dashed 

filament, labeled C, has its end radius drawn in and represents the most recently added filament.  As 
defined in the text, C "end intersects" with 1 and 2 but not 3, and C "cross intersects" 3 but neither 1 

nor 2. 

There are two types of intersections: “cross intersections” where two filaments 
cross and “end intersections” where a new filament is reachable from the end of the old 
filament (Figure 3).  Using geometry, the computer identifies these intersections as 
filaments are added during the process of setting up the actin filament network.  Call the 
newly added filament the “current” filament and all others “target” filaments.  After each 
filament addition, the computer examines all target filaments for both cross and end 
intersections with the current filament and vice versa, and, if necessary, it finds the point 
on the target filament to which a cargo switching from the current filament will go.  Each 
filament is described by an equation for a line segment.  The fact that a filament is a line 
segment is handled by keeping track of the end points. Determining the existence of a 
cross intersection is done by solving the equations of the two filaments for their common 
point and then checking if that common point is on one of the filaments.  Note that this 
also results in the location of the intersection, which is recorded at the same time and 
used as the transfer point.  For end intersections, we consider a circle centered at the 
filament end point with a radius set to 250 nm to coincide with a cargo.  The existence of 
an intersection is determined by first checking if the endpoints of the target filament are 
inside or outside of the current filament’s end circle.  If exactly one or two endpoints are 
interior to the circle, then intersection occurs.  If both are exterior, then the perpendicular 
distance to the target filament is found, and if it is less than or equal to the end radius, 
then an end intersection occurs.  If an end intersection is found to occur, then the transfer 
point is defined as the point on the target filament with the minimum distance to the end 
of the current filament.  Note that it is certainly possible, and fairly common, for a target 
filament to have both an end and cross intersection.  The main simplification made here is 
that the filament network is fixed.  To be applicable to real systems where AFs do move, 
this fixed approximation means that the time scale on which AFs change is long 
compared to that on which the cargos move.  This is a reasonable approximation since the 
time scale for to AFs change is on the order of several minutes. 

Now, we describe the motion of the cargos on the filaments in the simulation.  To 
start, a filament near the center of the simulation cell is chosen at random and a cargo is 



placed randomly on it.  Then, the cargo takes a step of size 37 nm, corresponding to the 
size of an MV step1.  First, the computer checks if the cargo has attempted to walk off the 
end of the filament, and if so it randomly selects an end intersecting filament and 
switches the cargo onto it.  Second, if the cargo remains on the filament, then the code 
looks for cross intersections on this step.  If there are any cross intersections, then the 
cargo attempts to switch onto each one with success probability ps, set to 50% for 
aggregation or 0% for dispersion.  Any successful switches immediately move the cargo 
onto the crossing filament.  If no intersection is found or accepted, the original step is 
accepted, and the process is repeated.  Also, while this is going on, the distance between 
turns is tracked for use in calculating the mean free path, and the position of the cargo is 

tracked for calculating 
2<r (t)> .  Trials are ended after up to 10,000 steps or if the cargo 

attempts to leave the simulation cell.  It is possible, but relatively rare, for a cargo to fall 
off and be unable to find a new filament on which to travel, and in this case the trial is 
prematurely ended.  Presumably, in the real system, lateral diffusion would eventually 
allow the cargo to reach a new filament.  
 
Mean Free Path Calculation: 
 
We give the details of our calculation of the mean free path given the distance dI between 
filament crossings.  Let ps be the probability to switch filaments at an intersection.  Then 
q=(1- ps)  is the probability to skip switching at an intersection. The probability P(n) to 
skip (n-1) intersections and then switch at the nth intersection is given by 1( ) n

sP n p q −= . 
Assuming that the cargo attaches to a filament at an intersection, the distance that it goes 
along a filament before switching to a new filament at the nth intersection (not counting 
the intersection where it first got on) is given by ndI. So the average distance traveled 
along a filament, i.e., the mean free path (MFP), is given by 
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This agrees with the expression given in the text. Here we are assuming that the filament 
is infinitely long. 



Possible optimization between aggregation and dispersion—microtubule searching: 

 
Figure 4: Plot of the fraction of cargoes that have successfully made 15 MT touches versus log time.  

Errors are smaller than the line width.  Aggregation is initially more efficient for times less than 20 s, 
and then, dispersion is more efficient from about 20-40s.  Finally, aggregation is more efficient for 

times longer than 40s. 

For aggregation, the goal is to hop onto a microtubule for subsequent efficient transport 
to the cell center, so local searching is optimized. Whether this is the case is not directly 
evident from the current data. To investigate aggregation further, simplified MTs are 
added to the simulations as parallel lines spaced by 800 nm. A range of distances 
comparable to the radius (±125 nm) of a pigment granule is defined around each MT 
within which a cargo is considered to contact the MT. If only a single cargo-microtubule 
contact is required, dispersing-type motion is as good or better than aggregation-type 
motion in finding a microtubule. 
 
However, if multiple cargo-microtubule contacts are required for transfer from the AF to 
the MT, aggregation-type motion is better. This can be seen by using an arbitrary 
requirement of 15 contacts. The time required for a cargo to make 15 contacts, or about 
two passes perpendicularly across a MT, is tracked for 100 realizations with 10,000 
cargos each (Figure 4). In the first 20 s, an aggregating cargo is about 20% more likely 
than a dispersing cargo to contact any MT 15 times. A dispersing cargo can possibly 
reach a second set of MTs after 13s, so its rate of contact accelerates, catching up to 
aggregation after about 20s. Thus, an aggregating cargo contacts the very first MT it 
reaches 15 times, but a dispersing cargo tends to zip past the first MT and not get 15 
contacts until it finds a second MT. Importantly, after a total of about 500s, 5.5% of 
dispersion cases never contact a MT 15 times but only 0.5% of aggregation cases never 
do.  Thus, fewer aggregating cargos are 'stranded' on the actin, improving overall 
transport toward the nucleus. Therefore, aggregation is better than dispersion for allowing 
multiple contacts between the cargo and the MT and quickly searching locally. 
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