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SUMMARY

A key step in sensory information processing in-
volves modulation and integration of neuronal oscil-
lations in disparate frequency bands, a poorly under-
stood process. Here, we investigate how top-down
input causes frequency changes in slow oscillations
during sensory processing and, in turn, how the
slow oscillations are combined with fast oscillations
(which encode sensory input). Using experimental
connectivity patterns and strengths of interneurons,
we develop a system-level model of a neuronal cir-
cuit controlling these oscillatory behaviors, allowing
us to understand the mechanisms responsible for
the observed oscillatory behaviors. Our analysis dis-
covers a circuit capable of producing the observed
oscillatory behaviors and finds that a detailed
balance in the strength of synaptic connections is
the critical determinant to produce such oscillatory
behaviors. We not only uncover how disparate
frequency bands are modulated and combined but
also give insights into the causes of abnormal
neuronal activities present in brain disorders.

INTRODUCTION

Cognitive processes—including attention, memory formation,

and sensory processing—are tightly correlated with neuronal os-

cillations involving multiple timescales. Depending on top-down

influences, oscillations in the low-frequency range (3–20 Hz) un-

dergo context-dependent frequency modulations, which deliver

specific commands of the higher-order cortex, suggesting that

sensitive frequency modulation plays a crucial role in cognitive

processes by rendering neuronal communication effective, pre-

cise, and selective (Bastos et al., 2015; Engel et al., 2001; Fries,

2015; Kilavik et al., 2012; Michalareas et al., 2016). Indeed, these

frequency changes likely coordinate specific cortical functions,

such as stimulus selection (Schroeder and Lakatos, 2009), multi-

sensory integration (van Atteveldt et al., 2014), and motor plan-

ning (Rickert et al., 2005) through combining with fast neuronal

oscillations (>20 Hz; phenomenon referred to as ‘‘cross-fre-
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quency coupling’’ [CFC]), which typically encode sensory stimuli

(Canolty and Knight, 2010; Hyafil et al., 2015; Schroeder and

Lakatos, 2009). CFC has recently received attention due to its

participation in cognitive processing (Hyafil et al., 2015). Not sur-

prisingly, altered oscillatory behaviors (e.g., abnormal frequency

modulation of slow oscillations and abnormal CFC) are reported

to cause cognitive deficits in various brain disorders (Basar-

Eroglu et al., 2008; Hong et al., 2004; Javitt, 2009; Koh et al.,

2011; Marco et al., 2011). However, in spite of such experimental

interest and demonstrated importance, how slow oscillations are

modulated, and how their combination with fast oscillations is

controlled, remains unclear.

Although exactly how these oscillatory behaviors are formed

and controlled remains unclear, we do know spatially where

these processes occur: in the superficial layers (layers 2 and 3)

of the sensory cortex (Chen et al., 2017). Layers 2 and 3 of the

sensory cortex play a central role in sensory processing as

they receive and integrate local feedforward inputs (i.e., bot-

tom-up sensory inputs) and top-down inputs from other cortical

areas (Harris and Mrsic-Flogel, 2013; Karnani et al., 2016; Lee

et al., 2013; Zhang et al., 2014). In particular, the cortico-cortical

top-down inputs to layers 2 and 3 are thought to be crucial

for context-dependent sensory processing (Bastos et al., 2015;

Harris and Mrsic-Flogel, 2013; Lee et al., 2013; Zhang et al.,

2014).

Sensory processing is likely to be reflected in the spiking

activity of neurons, and synchronized oscillatory firing activity

of pyramidal cells (PCs) at various frequencies has been typically

detected in layers 2 and 3 of the sensory cortex (Chen et al.,

2017; Womelsdorf et al., 2014). Although multiple features

contribute to determining the firing activity of PCs, the contribu-

tion of the three largest inhibitory interneurons (INs), which repre-

sent 90% of INs in layers 2 and 3 of the sensory cortex, has

gained much attention (Pfeffer et al., 2013). Somatostatin-

expressing INs (SST INs) and parvalbumin-expressing INs (PV

INs) have been shown to contact PCs andmediate synchronized

oscillatory activity of PCs in distinct frequency ranges (with SST

INs mediating oscillations in the 5- to 30-Hz range and PV INs

mediating oscillations in the >20-Hz range; Chen et al., 2017).

Moreover, vasoactive intestinal-peptide-expressing INs (VIP

INs) are the main recipients of top-down input from higher-order

cortex and mediate disinhibition of PCs through inhibiting SST

INs (Lee et al., 2013; Pi et al., 2013; Zhang et al., 2014).
thors.
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Figure 1. Neuronal Circuit Comprised of Heterogeneous Interneuron Classes in Layers 2 and 3 of the Sensory Cortex
(A) Schematic of the neuronal circuit created by the three interneuron (IN) classes and excitatory pyramidal cells (PCs). Inputs to modulate the circuit’s activity

come from the higher order cortex (top-down input) and the inter-layer (local feedforward input).

(B) Schematic of the nested oscillators (NFPC-SST in blue and NFPC-PV in red). PCs participate in the generation of both SST-dominated oscillation (in theta to beta

range) and PV-dominated oscillation (in gamma range).

(C) Connection probabilities (Pcon) of pathways within NFPC-SST and NFPC-PV were chosen to mediate two distinct synchronized oscillatory activities of the PCs.

(D) Spike rasters show the spike times of the PC population in each oscillator, reflecting the ensemble dynamics. With the assigned Pcon over the pathways,

NFPC-SST generates an 18-Hz oscillation (left, blue) and NFPC-PV generates a 75-Hz oscillation (right, red).
These three IN classes (i.e., SST, VIP, and PV INs) were

recently shown to form specific synaptic connections with

distinct connection strengths (Figure S1) that define a specif-

ically organized synaptic circuit (Pfeffer et al., 2013; Figure 1A).

However, an understanding of the functional ramification of the

specific connectivity properties for each IN class is still lacking

(Schröter et al., 2017). Here, we investigated exactly this, that

is, how specific connectivity properties of these three IN classes

contribute to modulate slow oscillations and further control CFC

between slow and fast oscillations.

Overall, we identified two particularly important substruc-

tures—(1) interlinked positive and negative feedback structure

among VIP INs, SST INs, and PCs and (2) unidirectional synaptic

inhibition of SST INs acting on PV INs—which, together with the

connection strengths that hold them together, are optimally

designed to generate, modulate, and combine the crucial

oscillatory behaviors required for sensory processing. Thus,

our analysis discovered how the circuit in layers 2 and 3 intrinsi-

cally generates oscillations; second, how it maximizes the fre-

quency modulation sensitivity of slow oscillations to top-down

input; and finally, how it allows stable CFC between slow and

fast oscillations.

RESULTS

Construction of a Computational Interneuron Circuit
Model Found in Layers 2 and 3 of the Sensory Cortex
We constructed a computational spiking neural circuit that

reflects the experimentally measured connectivity properties of
the comprising neuronal classes (Figure 1A; Pfeffer et al.,

2013). Each neuronal class was modeled by taking experimen-

tally determined electrophysiological membrane properties and

the population distribution in layers 2 and 3 of the sensory cortex

(see Method Details). Two excitatory Poisson inputs represent-

ing a local feedforward (bottom-up) and long-range top-down

input were given to the circuit (see Method Details). To exclu-

sively examine the effect of top-down influence (which is repre-

sented by top-down input strength) on the circuit dynamic, the

local feedforward input was kept constant in time and the

top-down input strength was varied (see Method Details). By

examining various combinations of connection probability

(Pcon) between pre- and postsynaptic neuronal populations,

we directly linked each combination to the response properties

of PCs for varying top-down input strength. Especially, we

focused on generating a ‘‘rhythmic mode’’ operation (Bastos

et al., 2015; Chen et al., 2017; Michalareas et al., 2016; Womels-

dorf et al., 2014; i.e., functions in an oscillatory-based regime),

which occurs in layers 2 and 3 of the sensory cortex. We thus

searched for a combination of Pcon among the pathways that

(1) generates slow and fast oscillations, (2) modulates frequency

of slow oscillation over varying top-down input strength, and

finally (3) creates CFC between slow and fast oscillations. Finally,

we compared theoretical behavior of our model with these cho-

sen values to experimentally determined data.

First, we noticed that the circuit contains two nested negative

feedback (NF) structures, NFPC-SST and NFPC-PV (Figure 1B),

where PCs are involved in both NF structures. NF structures

involving PCs and INs are ubiquitously found in neuronal
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Figure 2. Frequency Modulation Mediated by an Interlinked Positive and Negative Feedback Structure among Pyramidal Cells, SST

Interneurons, and VIP Interneurons

(A) Schematic with a sub-circuit of the circuit in Figure 1A, indicating an interlinked positive and negative feedback (IPNF) structure. After determining the

PconPC/SST and PconSST/PC for NFPC-SST to act as an oscillator (Figure 1C), we now include positive feedback (PF) by including the interactions with the VIP INs,

(legend continued on next page)
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networks. Because they have been proposed to generate oscil-

latory activity (Prill et al., 2005; Wilson and Cowan, 1972), we hy-

pothesized that here these structures might participate in gener-

ating the observed collective slow (3–20 Hz) and fast (>20 Hz)

oscillations in layers 2 and 3 of the sensory cortex (Chen et al.,

2017). Moreover, additional work found that the peak frequency

of the NF structure is primarily determined by the specific bal-

ance of connectivity strengths for pathways within the structure

(Börgers and Kopell, 2003; Brunel and Wang, 2003; Shin and

Cho, 2013). As noted above, modulating Pcon allows control of

synaptic connectivity strengths, thus, in principle, allowing us

to tune the oscillation frequencies for the two NF structures,

NFPC-SST and NFPC-PV. We denote the connectivity strengths

for these substructures as PconNF.We chose a particular PconNF
for each pathway (Figure 1C) that generates highly synchronized

oscillatory activities of the PCs (see Figure S2 and Method

Details for details). With such PconNF, in response to local feed-

forward input, the NFPC-SST generated an 18-Hz oscillation (Fig-

ure 1D, left) and the NFPC-PV generated a 75-Hz oscillation (Fig-

ure 1D, right), within the frequency ranges of typical beta and

gamma oscillations, respectively, and consistent with experi-

mentally determined frequencies (Chen et al., 2017). As such,

we kept PconNF fixed for all further analyses.

The Synaptic Structure Constructed by Distinct
Connectivity Patterns of VIP Interneurons, SST
Interneurons, and PCs Meets the Structural
Prerequisite for High Adaptability to Top-Down Input
Because PV INs are considered to contribute more on encoding

bottom-up sensory input rather than top-down input, we initially

excluded the PV INs from the circuit to investigate the circuit’s

top-down processing. Thus, we focused on the part of the circuit

that includes VIP INs, SST INs, and PCs. Intriguingly, we

observed that these three neuronal classes are connected by

positive-plus-negative feedback structures (Figure 2A, left).

Although a single negative feedback structure can produce

sustained oscillations, and single negative and positive feedback

structures are found in some biological networks (Eshaghi et al.,

2010; Gouzé, 1998; Kim et al., 2007, 2010; Kim and Cho, 2006;

Murray et al., 2010; Park et al., 2006; Shin et al., 2006; Sreenath
PFSST-VIP. We examined under what conditions the population activity of the PCs e

(i.e., asynchronous mode) by varying PconVIP/SST, PconSST/VIP, and top-down i

defined as an upper limit of parameter combinations (PconVIP/SST, PconSST/V

Rhythmic mode boundaries between top-down input strength and PconVIP/SST

indicates whether the particular parameter combination is designated as rhythmic

(either rhythmic mode or asynchronous mode) and averaging over all PconSST/V

(right). The color code represents the relative abundance of the number of times e

the range of PconVIP/SST that the rhythmic mode maintains over the wide top-d

(B) An example illustration of calculating the frequency modulation tendency (FM

PconVIP/SST and PconSST/VIP was examined (right up). Within the PconSST/VIP

(right bottom). The pink line indicates the optimal PconVIP/SST that maximizes th

(C) Modulation of the oscillation frequency over increasing PconSST/VIP and top

oscillation frequency modulates in a stepwise manner over the top-down input in

top-down input strengths is plotted (right).

(D) The FMT of the IPNF structure increased linearly with increasing PconSST/VI

(E) Firing rates of PCs increase as the strength of top-down input increases.

(F) IPNF structure provides a constant oscillation amplitude and the oscillation fr

box-and-whisker plots.
et al., 2008; Tsai et al., 2008), many biological oscillators employ

coupled feedback structures, as observed in eukaryotic cell cy-

cle (Pomerening et al., 2005), circadian clocks (Lee et al., 2000),

and the p53-Mdm2 oscillator (Harris and Levine, 2005). Gener-

ally speaking, the presence of positive feedback combined

with negative feedback increases adaptability to various stimuli

and creates greater frequency tunability over a wider stimulus

range than a simple negative feedback structure, while maintain-

ing a constant oscillation amplitude (Tian et al., 2009; Tsai et al.,

2008). Layers 2 and 3 of the sensory cortex also requires this

functional characteristic (i.e., a high degree of adaptability to

stimuli), as they are the major targets of top-down input from

higher-order cortex and have a central role in sensory process-

ing. Thus, high-frequency tunability by top-down input would

be preferable for the sensory cortex, to increase communication

diversity and allow selective communication with other brain

regions for top-down-influenced (i.e., context-dependent)

sensory processing. Notably, the interlinked positive and nega-

tive feedback (IPNF) structure among VIP INs, SST INs, and

PCs satisfy the structural prerequisite for high adaptability to

top-down input.

The Interlinked Positive and Negative Feedback
Structure of VIP-SST-PC Enables FrequencyModulation
with a Constant Amplitude
We were intrigued by the presence of the IPNF structure in

layers 2 and 3 of the sensory cortex because this structure has

never been reported in neuronal networks. Integrating positive

feedback, PFSST-VIP, with the negative feedback structure,

NFPC-SST, that we found likely to generate the beta oscillation

might then allow frequency tuning of this oscillation in response

to top-down stimuli. Because diverse responses can arise from

the same structure depending on its context, here we wanted

to assess the adaptability of the IPNF structure to varying top-

down stimuli: is it able to respond to a broad range of such stimuli

and, if so, which aspects of the network contribute to this ability.

We hypothesized that, to have high adaptability, the IPNF struc-

ture should first maintain (but modulate) the intrinsic oscillatory

behavior of NFPC-SST over wide top-down input strengths. To

investigate, we first explored the importance of the feedback
xhibits oscillatory behavior (i.e., rhythmicmode) versus asynchronous behavior

nput strength (left). We obtained the rhythmic mode boundary surface, which is

IP, and top-down input strength) that generated the rhythmic mode (middle).

at different PconSST/VIP are compared (middle up). The color of each voxel

mode (red) or asynchronousmode (blue). By summing the status of each voxel

IP values, the average rhythmic mode boundary over PconSST/VIP was obtained

ach voxel had rhythmic mode status over PconSST/VIP. Shaded box indicates

own stimuli (right).

T) of the IPNF structure (left). The FMT of the IPNF structure with particular

range of 0.6�0.9, the FMT exhibited a bell-shaped change over PconVIP/SST

e FMT of the IPNF structure.

-down input strengths, with a fixed PconVIP/SST of 0.12, is plotted (left). The

crement. Example evolution of the spike-time histogram of PCs under different

P. The pink line indicates the optimal PconSST/VIP that maximizes the FMT.

equency varies along with top-down input strengths. Data are represented as
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strength of the positive feedback (PF), PFSST-VIP module,

by changing connectivity strengths of the PFSST-VIP (i.e.,

PconVIP/SST and PconSST/VIP) and strengths of top-down input

and then assessing the impact of such changes by using numer-

ical simulations to determine whether the population of PCs ex-

hibits rhythmic mode under each condition (Figure 2A, left). If the

PCs do exhibit such a rhythmic mode, we further examined the

frequency values (see Method Details). One goal of exploring

the effect of changes in these parameter values was to under-

stand a surprising experimental observation: there is a distinct

disparity of the measured connectivity strengths in PFSST-VIP
(weak VIP/SST connectivity strength and strong SST/VIP

strength; Pfeffer et al., 2013).

By examining the whole parameter space, we were able to

determine the range of PF parameters over which theNF-derived

rhythmic mode persists; its boundary was defined as an upper

limit of the PconVIP/SST and PconSST/VIP combinations that

maintained the rhythmic mode in response to top-down

stimuli (Figure 2A, middle). Intriguingly, we found that the

rhythmic mode of NFPC-SST is maintained over a relatively wide

top-down input strength only for a low PconVIP/SST (i.e., for

PconVIP/SST < 0.3; Figure 2A, right).

As we identified that the VIP/SST pathway with the specific

range of PconVIP/SST contributes on maintaining rhythmic

mode for wide top-down input, we now investigated the contri-

bution of the SST/VIP pathway in deciding the adaptability of

the IPNF structure. As mentioned above, in general, it is likely

that, for context-dependent sensory processing, a functional

control circuit should display sensitive frequency modulation

of PCs to varying top-down stimuli (i.e., high adaptability). To

quantitatively explore this, and in particular the contribution of

the strength of the SST/VIP pathway to the frequency modu-

lation, we analyzed the actual frequency values that were ob-

tained at the boundary surface (Figure 2A, right). We developed

a metric we call the ‘‘frequency modulation tendency,’’ or FMT,

to measure the adaptability of the IPNF structure. The FMT

of the IPNF structure was calculated by counting the number

of different frequency values that appear over different top-

down input strengths at particular PconSST/VIP (Figures 2B,

left, and S3; see Method Details). Thus, a high FMT can be in-

terpreted as a high ‘‘top-down stimuli-to-unique frequency’’

mapping ability. We investigated how the FMT varies as

the PconSST/VIP changes and searched for optimal

PconSST/VIP that resulted in maximum FMT. While modulating

PconSST/VIP, we confined the analysis space to PconVIP/SST <

0.3 to maintain the rhythmic mode (see above). We found that

the FMT of the IPNF structure is determined by the balance

between PconVIP/SST and PconSST/VIP (Figure 2B, right top).

Our results (Figures 2B–2D) imply that the relatively weak con-

nectivity strength of the VIP/SST pathway and the relatively

strong connectivity strength of the SST/VIP pathway, in terms

of connection probability, are the conditions for maximizing

the frequency modulation capability of the IPNF structure. We

plotted some of the example evolution of the spike-time

histogram of PCs at PconVIP/SST = 0.12 and PconVIP/SST =

0.8 (Figure 2C). Oscillation frequency modulated from the

peak frequency of NFPC-SST to lower frequency in a stepwise

manner under increasing top-down input strength (Figure 2C).
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Ultimately, we picked PconVIP/SST = 0.12 and PconSST/VIP =

0.8 as the optimal Pcon to accomplish high FMT of the IPNF

structure (plotted with a pink line in Figures 2B, right bottom,

and 2D).

Under the tuned Pcons over the pathways for the maximum

frequency tunability, other characteristics of the neuronal

population activities exposed by the IPNF structure were

examined. As top-down input to VIP INs was increased, the

mean firing rates of PCs increased as previously reported

(Lee et al., 2013; Figure 2E). Furthermore, the IPNF structure

enabled the adjustment of the oscillation frequency while main-

taining the amplitude of the oscillation approximately constant,

which is an intriguing characteristic caused by the VIP INs re-

cruiting top-down inputs (Figure 2F). Such a characteristic

plays a crucial role in allowing slow oscillations to form reliable

and well-controlled CFC with fast oscillations; this is discussed

in more detail later.

The Lack of Self-Inhibition in SST and VIP Interneurons
Enables Flexible Frequency Modulation
One notable difference between the SST INs, VIP INs, and PV INs

is their self-inhibition preference: there are strong self-inhibitory

connections among PV INs, but the opposite is true for the

SST INs and VIP INs (Lee et al., 2013; Pfeffer et al., 2013). In

the context of the previously studied negative feedback loop

involving PV INs and PCs (NFPC-PV), which is ubiquitously found

in all brain regions and known to typically encode sensory input,

several studies reported on the phenomenological attributes of

strong self-inhibition on PV INs (Bartos et al., 2007; Buzsáki

andWang, 2012; Deleuze et al., 2014): inclusion of self-inhibition

connections among PV INs in NFPC-PV provides more precise

control over the activity of the PV INs, resulting in generation of

highly synchronized gamma oscillations. Because such oscilla-

tions become more vulnerable to noise as the frequency in-

creases, high firing synchrony of PV INs would be desirable for

gamma oscillations to ensure their reliability of information trans-

mission within and between brain regions. However, no study

has yet suggested functional consequences—and advantages,

if any—due to SST INs and VIP INs avoiding self-inhibition

connections.

To determine the ramifications of the weak self-inhibition

preferences of SST INs and VIP INs, we used our FMT metric

(see above): we increased PconSST/SST and PconVIP/VIP,

respectively (Figures 3A and 3C) and determined how that

changed the IPNF structure’s response to various top-down

input strengths (see Method Details). Overall, we found that

increasing self-inhibition resulted in significant impairment of

FMT (Figures 3B, 3D, and S4). As an example, as we increased

PconSST/SST, the FMT of the IPNF structure declined dramati-

cally (Figure 3B). In sum, the IPNF circuit’s activity is differentially

sensitivity to inclusion of self-inhibition connections to the SST

INs and VIP INs (i.e., there are different minimum strengths of

self-inhibition required to observe significant effects); however,

their effects are qualitatively similar: they both result in a reduced

FMT of the IPNF structure. These results thus provide an expla-

nation for the experimentally observed lack of self-inhibitory

connections: self-inhibition is lacking to maximize the FMT of

the IPNF structure. Therefore, in the model, we set the optimal



Figure 3. Effect of Increasing Self-Inhibition Strength in SST and VIP Interneurons onDetermining the FrequencyModulation Tendency of the

IPNF Structure

(A) Schematic of the IPNF structure, highlighting possible self-inhibition of SST interneurons (INs). The strength of the self-inhibition was determined by the value

of PconSST/SST.

(B) As PconSST/SST increases, the population activity of the PCs increasingly remains at the inherent characteristic peak frequency generated by the NFPC-SST,

which leads to a decrease in the FMT of the IPNF structure. Optimal PconSST/SST value that provides the maximum FMT is plotted with pink line.

(C) Schematic of the IPNF structure, highlighting possible self-inhibition of VIP INs. The strength of the self-inhibition was controlled by varying PconVIP/VIP.

(D) As the PconVIP/VIP increases, a larger PconVIP/SST is required (turquoise) to maximize FMT of the IPNF structure. However, increasing PconVIP/SST

eventually reduces the FMT of the IPNF structure (black), whichwas shown in our previous result (Figure 2B, right bottom). Optimal PconVIP/VIP value that provides

the maximum FMT is plotted with pink line. Data are represented as box-and-whisker plots.
Pcon of the SST/SST and VIP/VIP pathway to zero, as they

provide the maximum frequency modulation capability to the

IPNF structure.

Incorporation of Bottom-Up Influences by PV INs
So far, we identified the IPNF structure as the core structure for

top-down-mediated frequency modulation of the slow oscilla-

tions observed in layers 2 and 3. However, another factor may

affect the FMT of the IPNF structure: the PV INs actually form a

negative feedback loop with PCs and thus deliver bottom-up

influences to the PCs (Figure 4A, left). So, unlike the above

simplified model where the activity of PCs was solely influenced

by SST INs, here (and in actuality) the PCs receive influences

from PV INs as well, and thus the FMT of the IPNF structure is

likely affected by inclusion of the PV INs.
Mechanistically, previous experiments found that gamma

oscillations of the PV INs are controlled by the top-down-

mediated slow oscillations (Bastos et al., 2015; Fries, 2015),

suggesting that the FMT of the IPNF should remain high with

inclusion of PV INs. To unravel the specific conditions under

which PV INs meaningfully contribute to the overall circuit func-

tion for sensory processing, we thus analyzed an extended

model, which included PV INs in the IPNF structure (Figure 4A,

left). Specifically, we first examined how inclusion of the PV INs

affects the FMT of the IPNF structure. Increases in the top-

down input to the VIP INs reduce the activity of the SST INs,

which in turn release the PV INs from inhibition by the SST

INs. This decrement in SST INs activity allows the PV INs to

start influencing the activity of PCs and indeed become the

dominant population that governs the PCs’ activity. We named
Cell Reports 25, 1548–1560, November 6, 2018 1553



Figure 4. Variation in the Frequency Modulation Tendency of the IPNF Structure by Inclusion of SST/PV Pathway

(A) Schematic of the whole circuit (left). Increases in the top-down input to the VIP INs reduces the activity of the SST INs, which in turn releases the PV INs from

inhibition by the SST INs. This decrease in the activity of the SST INs eventually causes the PV INs to become the dominant population that governs the PCs’

activity and mediates state transition (right).

(B) Variation in the FMT of the IPNF structure when it is in the SST-dominated state, as a function of the strength of the SST/PV linkage, controlled by increasing

PconSST/PV. The transition to the PV-dominated state with high-frequency oscillations occurs as a function both of PconSST/PV and of the strength of top-down

input (left). The FMT of the IPNF structure only increases with PconSST/PV up to a critical PconSST/PV value of 0.5 (right). The pink line indicates the optimal

PconSST/PV that maximizes the FMT. Data are represented as box-and-whisker plots.
this phenomenon a ‘‘state transition’’ from ‘‘SST-dominated

state’’ to ‘‘PV-dominated state’’ (Figure 4A, right). This gradual

shift of PCs’ activity dominancy eventually affects the FMT of

the IPNF structure. Because the SST/PV pathway most

directly controls the activity of PV INs, we examined changes

in the FMT of the IPNF structure due to modulation

of PconSST/PV. Intriguingly, we found that excess value of

PconSST/PV is not functional. That is, although increasing

PconSST/PV to 0.5 increases the overall frequency tunability,

when PconSST/PV exceeds this value, it no longer affects the

frequency tunability of the IPNF structure (Figure 4B, left),

because increased inhibition from the VIP INs to the SST INs

caused the activities of the SST INs to decrease to a level

that NFPC-SST could no longer sustain the SST-dominated oscil-

lations. We thus chose PconSST/PV = 0.5 as the optimal Pcon

to carry out the frequency modulation process (plotted with a

pink line in Figure 4B, right). In summary, we built a model
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that determines the adaptability of the circuit with taking both

top-down and bottom-up influences into account.

Top-Down-Mediated Slow Oscillations Control Bottom-
Up-Mediated Fast Oscillations via Precisely Tuned
Synaptic Connectivity
Now that we have created a model whose architecture is

derived from experiments, with connectivity strengths, in terms

of connection probability, optimized to have high adaptability

to top-down inputs (Figure 5A), we wanted to use the extended

model to better understand experimentally observed CFC, i.e.,

the ability of slow oscillations to affect fast ones. We examined

spike rasters that reflect population-level activity of the four

neuronal populations under five specific top-down input

strengths. The PCs, SST INs, and VIP INs exhibited a global

oscillatory behavior where the strength of top-down input deter-

mines the unique oscillation frequency of the PCs’ firing activity



Figure 5. The Activity Profiles of Four Neuronal Classes

(A) Diagram of the circuit, with the optimal connectivity strength (in terms of Pcon) of each pathway, obtained by the simulation analysis, to maximize the FMT of

the IPNF structure (i.e., high adoptability to top-down input).

(B) Spike rasters, reflecting ensemble activity of the four neuronal populations, as a function of different top-down input strengths. During the SST-dominated

state, PCs, SST INs, and VIP INs show synchronized population activity, where their oscillation frequencies decrease along with the increase of top-down input.

When top-down input increases to the level where SST INs can no longer control PV INs, PV INs become a dominant IN population that controls the firing pattern

of PCs.

(C) The strength of phase-amplitude coupling (PAC) is quantified for the PCs’ oscillatory activities that arise at a top-down input strength of 40 spikes/s,

70 spikes/s, and 100 spikes/s.

(D) Quantification of the change of the PAC strength along with the strength of the SST/PV pathway.
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Figure 6. Connectivity Strengths based on

Theoretical Model Simulations and Experi-

mental Recordings

(A) The optimal Pcon values for each pathway in the

circuit, obtained by the simulation analysis, under

the hypothesis that, for optimal performance, the

circuit should provide maximum frequency modu-

lation tendency.

(B) Estimated mean unitary postsynaptic charge

(uPSQ) (the time integral of unitary postsynaptic

current) of the synaptic connections among the four

different neuronal classes.

(C) Theoretical INC values obtained by multiplying

Pcon of (A) and mean uPSQ of (B).

(D) Experimentally measured INC values in the visual

cortex layers 2 and 3 (values adapted from Figure 7A

in Pfeffer et al. 2013). It can be seen that the INC

values over the pathways are similar between

theoretically obtained values and experimental

values. This result is thus consistent with the hy-

pothesis that, in vivo, synaptic connectivity

strengths in the pathways within the circuit have

evolved to the optimal values that not only provide

high adaptability to the top-down input but also

provide stable CFC between sensory information

(i.e., top-down command and bottom-up sensory

stimuli).
(Figure 5B). Most importantly, the firing pattern of PV INs—and

its subsequent influence on the PCs—was controlled by the ac-

tivity of SST INs mediated by top-down input through the SST/

PV pathway. As a result, the CFC appeared as the top-down

input strength to VIP INs was increased (40 spikes/s to 70

spikes/s and 100 spikes/s). We explored this CFC in more detail

by quantifying the strength of phase-amplitude coupling (PAC)

(see Method Details), which experimentally is the most widely

observed type of CFC between slow and fast oscillations (Hyafil

et al., 2015). We quantified the PAC strength of PCs’ oscillatory

activities in Figure 5B (via top-down input strength of 40 spikes/

s, 70 spikes/s, and 100 spikes/s). As the top-down input strength

increased, we observed a phase shift of strong PAC from b=g to

a=g to q=g (Figure 5C). Finally, because our analysis highlighted

the critical role of SST activity in controlling PV activity, we

explored this more by altering the PconSST/PV and investigating

its effect on PAC (Figure 5D). Indeed, the SST-PV coupling

strength played a critical role in facilitating the PAC: the weak

PconSST/PV produced weak PCA (Figure 5D, top) whereas the

PconSST/PV of 0.5, which we chose as the optimal value to

maintain high FMT of the IPNF, also ensured strong PAC (Fig-

ure 5D, bottom). In summary, although a number of synaptic

architectures were previously suggested for generation of PAC

(Hyafil et al., 2015), none considered the role of SST/PV

pathway, which we find plays a dominant role.

Regulation of oscillation amplitude during frequency modula-

tion is another important feature for brain function. In particular,

co-modulation of amplitude and frequency has been widely
1556 Cell Reports 25, 1548–1560, November 6, 2018
observed during frequency modulation in

fast oscillations (i.e., gamma range; Jadi

and Sejnowski, 2014). However, interest-
ingly, our analysis suggests that the IPNF structure keeps the

slow oscillation amplitude approximately constant during fre-

quency modulation, which is an intriguing characteristic caused

by the VIP INs recruiting top-down input (Figure 2F). To explore

the functional importance of this unique feature, especially in

respect to PAC efficiency, we considered a simplified oscillator

model (Figure S5; see Method Details). Interestingly, there was

superior PAC efficiency when the slow oscillation amplitude

was kept constant during frequency modulation (Figure S6).

Benefits of this property are discussed below (see Discussion).

Taken all together, our analysis provides a circuit-level explana-

tion of the previous experimental observations in terms of

a cooperative mechanism arising from interactions between

diverse IN classes.

Link to Previous Experiments
By studying the circuit’s dynamic response to top-down input,

we discovered that a specific balance of synaptic connectivity

strengths (in terms of Pcons; Figure 6A) could yield the rhythmic

mode operation for encoding a wide range of top-down input by

modulating the frequency of the SST-dominated oscillation in

theta to beta range. Because these Pcons were derived by simu-

lation analysis of the model circuit, under the appealing but un-

tested hypothesis that the system was optimized for frequency

modulation sensitivity of slow oscillations to top-down input,

we wanted to test whether this was actually consistent with

experimentally measured synaptic connectivity strengths.

Pfeffer et al. (2013) determined the synaptic connectivity



strengths between SST INs, VIP INs, and PV INs in the visual cor-

tex layers 2 and 3. They used a measurement called the individ-

ual neuronal contribution (INC), which is the product of the Pcon

between the pre- and postsynaptic neuronal classes and the

average unitary postsynaptic charge (uPSQ) (the time integral

of the unitary postsynaptic current) generated by a single pre-

synaptic spike. We estimated the average uPSQ between the

pre- and postsynaptic neuronal classes by using previous elec-

trophysiological recordings (Avermann et al., 2012; Figure 6B;

see Method Details). By multiplying the Pcon (Figure 6A) and

estimated uPSQ (Figure 6B), we represented the synaptic con-

nectivity strength of each pathway obtained by the simulation

analysis in terms of the INC value (Figure 6C). We found that

the estimated INC values of our model are consistent with the

experimental INC values of Pfeffer et al. (2013; Figure 6D), sug-

gesting that our hypothesis that the connectivity properties of

the circuit might have organized to perform high-frequency

tunability to encode top-down inputs (i.e., high adaptability) is

reasonable. In particular, a distinct disparity of the connectivity

strengths over the SST/VIP and VIP/SST pathways support

the maximum FMT of the IPNF structure for the SST-dominated

slow oscillation. Moreover, we found that the experimentally

determined INCSST/PV is consistent with our model value, sug-

gesting that top-down and bottom-up influences are properly

integrated to perform sensory processing. Moreover, the unique

synaptic connectivity strength of INCSST/PV suggests that the

brain circuit has evolved to consider the wiring economy for its

computational needs and make pertinent (i.e., neither too weak

nor unnecessarily strong) synaptic connections. Importantly,

taken together, our results suggest that the importance of synap-

tic connections cannot be determined solely by their strengths,

because a certain synaptic connectivity strength has meaning

primarily not in isolation but rather as it affects the network’s

function.

DISCUSSION

The superficial layers (layers 2 and 3) of the sensory cortex play a

central role in sensory processing by receiving and integrating

bottom-up and top-down inputs from other layers (within the

sensory cortex) and other cortical areas (Harris andMrsic-Flogel,

2013; Jones andWise, 1977; Lee et al., 2013; Zhang et al., 2014).

In particular, top-down inputs from the higher-order cortex are

considered crucial for context-dependent sensory processing

(Bastos et al., 2015; Diamond et al., 2008; Harris and Mrsic-Flo-

gel, 2013; Lee et al., 2013; Zhang et al., 2014). Interestingly,

synchronized oscillatory firing activities of PCs at various fre-

quencies within the theta to beta range are typically detected

in layers 2 and 3 (Bastos et al., 2015; Chen et al., 2017; Michalar-

eas et al., 2016; Womelsdorf et al., 2014), suggesting that

distinct oscillation frequencies encode the context-dependent

sensory processing. Furthermore, modulations of bottom-

up-mediated gamma oscillation by these top-down-mediated

slow oscillations are also detected in this area (Bastos et al.,

2015; Fries, 2015), suggesting an integration capability of the

area. Considering the crucial role of layers 2 and 3 in sensory

processing, a circuit-level systematic understanding of these

phenomena is of paramount importance. Nonetheless, although
the neuronal classes composing this area—and their intercon-

nection properties—have been reported, because they form a

complex feedback structure, it had previously not been possible

to use this experimental information to understand the ensem-

ble’s function.

Throughout this paper, we attempted to explain the physiolog-

ical regime (i.e., the origin of the observed frequencies and how

those frequencies are modulated and combined) in layers 2

and 3 of the sensory cortex. By analyzing the patterns of synaptic

connectivity in relation to the response properties of PCs,

we found that connectivity patterns with specific connectivity

strengths are designed to support a maximum frequency

tunability according to the top-down input strength, enabling

top-down demands to be encoded in distinct frequency compo-

nents. The IPNF structure we identify, formed by VIP INs, SST

INs, and PCs, is a key frequency modulator for the top-down

input, where VIP INs preferentially recruit top-down inputs.

From this analysis, various intriguing experimentally observed

connectivity properties could now be rationalized. For instance,

we find that the weak connectivity strength of the VIP/SST

pathway is required to sustain synchronized oscillatory activity

for PCs (Figure 2A, right). Moreover, the strong connectivity

strength of the SST/VIP pathway is required to broaden the fre-

quencymodulation range to encode top-down inputs (Figure 2D).

Our model helps understand the reason for the curious absence

of self-inhibition in SST INs and VIP INs: it contributes to achieve-

ment of sensitive frequency modulation (Figures 3B and 3D).

Moreover, the intermediate connectivity strength of the SST/

PV pathway is an optimal value that both maximizes the fre-

quency modulation capability of the IPNF structure among

VIP-SST-PCs (Figure 4B) and also ensures stable cross-fre-

quency coupling between top-down-mediated slow oscillations

and bottom-up-mediated fast oscillations (Figure 5D). As seen in

our extensive simulation results, alteration of even a single

pathway can strongly influence the outcome of the circuit (i.e.,

frequency tunability and integration of slow and fast oscillations),

indicating that interactions among neuronal classes should be

very specifically tuned for a particular function.

Notably, our study thus adds perspective on how frequency

modulation of the slow oscillation occurs. Previously, the fre-

quencymodulation of the slow oscillation wasmainly considered

as a consequence of electrical coupling among the SST INs

(Fanselow et al., 2008; Urban-Ciecko and Barth, 2016), which

is an intrinsic property, that is, independent of the external stim-

ulus. However, such mechanism was suggested before the syn-

aptic interaction properties of SST INs with neighboring neuronal

classes were revealed. Considering the recent experimental

findings that SST INs are connected with VIP INs, which are

the main recipients of the top-down input, experiments might

thus lead one to suppose that the role of synaptic interactions

of SST INs with neighboring neuronal classes must now be re-

considered as one attempts to understand top-down influences

on the SST-dominated oscillations. Thus, we developed such an

integrated approach and identified a synaptic mechanism of the

frequency modulation process.

The best-known mechanism of long-range input recruitment

to local regional circuits is via PCs, but recent experimental

results show long-range projection to various IN classes
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(Womelsdorf and Everling, 2015). Determining the precise func-

tional consequences brought about by different IN classes

recruiting long-range cortico-cortical inputs has been a major

challenge in neuroscience research (Womelsdorf and Everling,

2015). In the case of layers 2 and 3 of the sensory cortex, in

contrast to the other two IN classes, VIP INs are the main recip-

ients of top-down input. As an exclusive functional consequence

of the VIP INs recruiting long-range inputs, we revealed that the

oscillation frequency of the SST-dominated theta to beta range

could be adjusted without compromising the oscillation ampli-

tude, which is an extraordinary characteristic. In contrast, as

mentioned above, PV INs recruit preferential input from the thal-

amus to pyramidal-interneuron gamma structure (PING) and

thereby modulate oscillation frequency within the gamma range

(Jadi and Sejnowski, 2014). During this frequency modulation

process, substantial changes in the oscillation amplitude occur

as well (Jadi and Sejnowski, 2014). Because co-modulation of

amplitude and frequency occurs in the gamma range, why is

frequency modulation with a constant amplitude required in

the low (i.e., theta to beta) frequency range? We believe it serves

to avoid cross-talk. That is, different low-frequency band oscilla-

tions are caused by distinct top-down demands and ultimately

often control the gamma range oscillation through CFC to carry

out diverse cognitive functions (Canolty and Knight, 2010;

Schroeder and Lakatos, 2009). For reliable and effective CFC,

the low-frequency band oscillations should keep constant ampli-

tudes over a range of frequencies such that diverse top-down

information is robustly processed against various disturbances

(Figures S5 and S6). Taken together, the IPNF structure and its

long-range input recruitment from the higher order cortex to

the VIP INs enables the low-frequency band oscillations in theta

to beta range to reliably control the gamma oscillations and to

further process various cognitive functions by allowing flexible

frequency modulation over a constant amplitude.

By providing a quantitative model of this critical brain pro-

cesses, our model creates a platform to better understand dis-

ease processes. In particular, our rhythmic mode boundary

surface analysis (Figure 2A, middle) provides a rough disease-

relevant map of parameter values: any choice of parameters,

from electrophysiological properties of individual neurons to

the connection probabilities between different neuronal classes,

that move the system across the boundary and destroy the

rhythmic mode should result in disease. In principle, using

measured cellular-level changes occurring in specific disease

processes, one can then use the model to determine how the

system’s function is altered, and thus, one can start to link spe-

cific functional changes to physiologically observed symptoms,

leading to a clearer view of the disease and also potentially sug-

gesting new therapeutic approaches (Assmus et al., 2006).

Although it provides an important framework for further

studies, we note that our model is incomplete: frequency modu-

lation within gamma range in layers 2 and 3 of the sensory cortex

by PV INs was not considered. Although such frequency modu-

lation of gamma range oscillation is also important, as it reflects

bottom-up sensory stimulus, it is beyond the scope of this study,

which instead was investigating top-down-mediated frequency

modulation of slow oscillations. However, a previous modeling

study suggested that the frequency of the gamma range oscilla-
1558 Cell Reports 25, 1548–1560, November 6, 2018
tion can be regulated by the relative strength of two distinct

excitatory pathways to the PV INs (i.e., monosynaptic and disy-

naptic pathways; Jadi and Sejnowski, 2014). Based on recent

experimental results showing that PV INs preferentially receive

additional strong excitatory inputs from the thalamus (Cruik-

shank et al., 2007; Yang et al., 2013), we assume that these

strong inputs may mediate the frequency modulation within the

gamma range.

Another limitation is that our study is based on numerical

investigation. Although the model is well defined and robust,

the approach is inherently insufficient to provide a detailed

mechanistic-level explanation for the models’ dynamic proper-

ties. For such insight, future analytic investigation is required,

where analytical solutions directly connect the mechanisms

and parameters to dynamic properties.

Various feedback structures are ubiquitously observed in

different types of biological networks, including gene regulatory

networks, molecular networks, and neuronal networks, and

are the building blocks that perform distinct functions. A few

intriguing cases in which different biological networks share

similar feedback structures have been identified, and these feed-

back structures perform similar functions (Alon, 2006; Milo et al.,

2002). This functional similarity raises the possibility that evolu-

tion may have converged on similar circuits in different biological

networks to perform important signal processing functions (Alon,

2006;Milo et al., 2002). The functional role of the IPNF structure in

the brain network has not been reported, making our work the

exemplar of a neuronal structure able to modulate oscillation

frequency according to top-down demands while maintaining

constant amplitude. Although we focused on layers 2 and 3 of

the sensory cortex, recent studies suggest that other cortical re-

gions share strikingly commonalities in constituent cell types and

their intrinsic properties (Harris and Mrsic-Flogel, 2013; Schröter

et al., 2017). Therefore, the IPNF structure may turn out to be a

general frequency modulator structure in multiple brain areas.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d METHOD DETAILS
B Network model

B Synaptic interaction modeling

B External inputs

B Conditions for generating oscillations in NFPC-SST and

NFPC-PV
B Characterization of oscillations

B Frequency modulation tendency

B Quantification of phase-amplitude coupling

B Quantification of noise vulnerability of phase-ampli-

tude coupling with respect to amplitude-frequency re-

lationships of slow oscillations

B Data analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

d DATA AND SOFTWARE AVAILABILITY



SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and two tables and can be

found with this article online at https://doi.org/10.1016/j.celrep.2018.10.029.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF)

grants funded by the Korea Government, the Ministry of Science and ICT

(2017R1A2A1A17069642 and 2015M3A9A7067220), and also supported by

the Samsung Research Funding Center of Samsung Electronics (SRFC-

IT1401-05).

AUTHOR CONTRIBUTIONS

K.-H.C. designed the project and supervised the research; B.L., D.S., and

K.-H.C. performed the modeling and analysis; and B.L., D.S., S.P.G.,

and K.-H.C. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 5, 2018

Revised: May 21, 2018

Accepted: October 3, 2018

Published: November 6, 2018

REFERENCES

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Bio-

logical Circuits (CRC).

Assmus, H.E., Herwig, R., Cho, K.-H., and Wolkenhauer, O. (2006). Dynamics

of biological systems: role of systems biology in medical research. Expert Rev.

Mol. Diagn. 6, 891–902.

Avermann, M., Tomm, C., Mateo, C., Gerstner, W., and Petersen, C.C. (2012).

Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel

cortex. J. Neurophysiol. 107, 3116–3134.

Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic mechanisms of synchro-

nized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neuro-

sci. 8, 45–56.

Basar-Eroglu, C., Schmiedt-Fehr, C., Marbach, S., Brand, A., and Mathes, B.

(2008). Altered oscillatory alpha and theta networks in schizophrenia. Brain

Res. 1235, 143–152.

Bastos, A.M., Vezoli, J., Bosman, C.A., Schoffelen, J.-M., Oostenveld, R.,

Dowdall, J.R., De Weerd, P., Kennedy, H., and Fries, P. (2015). Visual areas

exert feedforward and feedback influences through distinct frequency chan-

nels. Neuron 85, 390–401.

Börgers, C., and Kopell, N. (2003). Synchronization in networks of excitatory

and inhibitory neurons with sparse, random connectivity. Neural Comput.

15, 509–538.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire

model as an effective description of neuronal activity. J. Neurophysiol. 94,

3637–3642.

Brunel, N., and Wang, X.-J. (2003). What determines the frequency of fast

network oscillations with irregular neural discharges? I. Synaptic dynamics

and excitation-inhibition balance. J. Neurophysiol. 90, 415–430.

Bruns, A., and Eckhorn, R. (2004). Task-related coupling from high- to low-

frequency signals among visual cortical areas in human subdural recordings.

Int. J. Psychophysiol. 51, 97–116.
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METHOD DETAILS

Network model
The network model was constructed with four neuronal classes (PCs, PV INs, SST INs, and VIP INs). A total of 1600 neurons were

used to describe the network, divided into 1200 PCs, 160 PV INs, 120 SST INs, and 120 VIP INs. The number of neurons in each class

were chosen by following experimentally determined values (Gentet et al., 2010; Lefort et al., 2009). All neurons were described by

the conductance-based adaptive exponential integrate and fire model (AdEx) (Brette and Gerstner, 2005). The membrane potential

Vm;i of neuron i was described with the following equation

C
dVm;i

dT
= � glðVm;i � ElÞ+glDTe

�
Vm;i�VT

DT

�
�wad � gPC

�
Vm;i � Esyn;e

�� gPV

�
Vm;i � Esyn;i

�� gSST

�
Vm;i � Esyn;i

�
� gVIP

�
Vm;i � Esyn;i

�
; i˛½1� 1600�

where Vm;i ; i˛½1� 1200�, Vm;i ; i˛½1� 1360�, Vm;i ; i˛½1361� 1480�, Vm;i ; i˛½1481� 1600� correspond to membrane potential of PCs,

PV INs, SST INs and VIP INs population, respectively. The adaptation current wad was described by

twad

dwad

dT
= aðVm;i � ElÞ �wad

where twad
is the time constant of the adaptation of a neuron and a is the adaptation parameter. When the membrane potential

Vm reaches the spike threshold VT , a spike is emitted, and Vm is reset to the resting membrane potential Vrest, whereas wad is

incremented by an amount b. Experimentally determined values for electrophysiological properties were used to represent the

class-specific neurons (see Table S1) (El-Boustani and Sur, 2014; Ko et al., 2013; Neske et al., 2015). Respect to the adaptation cur-

rent, a and b for PC, SST, VIP class were set as 2 nS, 2 nS,�1 nS and 4 pA, 4 pA, 19 pA, respectively. twad
was set to 120 ms for PC,

SST, and VIP. For PV class, the adaptation current was set to zero as the PV class shows weak adaptation (Pfeffer et al., 2013).

Synaptic interaction modeling
Experimentally recorded average unitary postsynaptic potential (uPSP) amplitudes and kinetics (Avermann et al., 2012; Neske et al.,

2015) were used to estimate the synaptic properties between the pre- and postsynaptic neuronal populations. The synaptic conduc-

tance profile gsynðtÞ was modeled as a sum of two exponentials, one for rising and the other for the decaying phase with the time

constant trise and tdecay. Minimization of the mean square error between the estimated uPSP and the experimentally determined

uPSP served as a cost function to optimize the synaptic parameters (gsyn; max, trise,tdecay ) (Hoffmann et al., 2015). The estimated

synaptic parameters are summarized in Table S2. The conductance changes by arrival of the jth spike from the presynaptic input

stream S was described by

gsynðtÞ=
Xn

j =1

�
gsyn;max 3N3

�
exp

�
� t � tj
tdecay

�
� exp

�
� t � tj

trise

���
; S= ½t1; t2;.; tn�

The normalization factor N ensures that gsyn is equals to gsyn;max at t = tpeak where tpeak and N were described by

tpeak = tj +
tdecaytrise

tdecay � trise
ln

�
tdecay
trise

�
;
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N=
1

exp
�� ðtpeak � tjÞ

�
tdecay

�� expð � ðtpeak � tjÞ
�
triseÞ

The unitary postsynaptic current (uPSC) and resultant unitary postsynaptic charge (uPSQ, the time integral of the uPSC) evoke by

single presynaptic spike were described by

IsynðtÞ=gsynðtÞ
�
Vm;i � Esyn

�
;

Qsyn =
X
t

IsynðtÞ

which are summarized in Table S2. The connectivity specificity of each neuronal class as a postsynaptic population was

described by setting the synaptic conductance gsyn of unwired neuronal classes to zero as follows: gVIP = 0 for i˛½1� 1200�,
gVIP = 0 for i˛½1201� 1360�, gSST =gPV = 0 for i˛½1361� 1480�, and gPC = gVIP = gPV = 0 for i˛½1481� 1600�; thus, the unwired

neuronal classes do not influence the Vm changes of that neuronal class. Exceptionally, synaptic conductance profile of gSST for

i˛½1361� 1480� and gVIP for i˛½1481� 1600� was calculated to examine contribution of self-inhibition connection on the SST INs

and VIP INs, respectively.

External inputs
To mimic the local feed-forward input from the inter-layer, 150 presynaptic Poisson neurons with firing rates of 40 spikes/s were pro-

jected onto PCs, PV INs, SST INs and VIP INs with PconLOCAL-PC = 0.2, PconLOCAL-PV = 0.01, PconLOCAL-SST = 0.01, PconLOCAL-VIP = 0.01 for

all simulations. Connection probabilities were chosen to create oscillatory behaviors on NFPC-SST, and NFPC-PV, respectively. An

additional 150 Poisson neurons with varying firing rate from 0 spikes/s to 150spikes/s with 2 spikes/s increment were projected

exclusively to the VIP INs with a PconTOP_DOWN-VIP = 0.3 to mimic the top-down input from a higher-order cortex.

Conditions for generating oscillations in NFPC-SST and NFPC-PV

Connection probability (Pcon) of the excitatory and inhibitory connections within the two nested negative feedback structures

(NFPC-SST and NFPC-PV) were chosen to generate synchronized oscillatory activity of PCs. We divided the PCs population into

two equal sub-populations, assuming that one population is involved in generating slow oscillation, and another population is

involved in generating fast oscillation. These two sub-populations of PCs were connected through an excitatory connection of

PconPC/PC = 0.02 to influence each other. Following criteria were used to select the Pcon for each pathway in NFPC-SST and

NFPC-PV: i) a Pcon combination that generates oscillatory activity of PCs (characterization of oscillatory activity is described in

Characterization of oscillations below), ii) a Pcon combination that provides high synchrony in the population activity of PCs

(measured by calculating synchrnoization index (Shin and Cho, 2013)). Using numerical simulations, we chose the specific Pcon

combination of PconSST/PC = 0.36, PconPC/SST = 0.18 and PconPV/PC = 0.53, PconPC/PV = 0.4, PconPV/PV = 0.75 that generates

highly synchronized and experimentally observed slow (18 Hz) and fast (75 Hz) oscillations, respectively (Chen et al., 2017) (see

Figure S2).

Characterization of oscillations
The population activity of PCs was characterized as either rhythmic-mode (i.e., oscillatory mode) or asynchronous-mode (i.e.,

non-oscillatory mode) according to the following rhythmicity criteria: The spike-time histogram (its definition is described in the

Data analysis section below) of PCs was low-pass filtered with a cutoff frequency of 100 Hz using fifth-order Butterworth filters in

theMATLAB signal-processing-toolbox. The amplitude of each frequency component of the histogramwas detected by Fast Fourier

Transform (FFT) using the fft command in MATLAB 2014a. A dominant (or characteristic) frequency component was considered

present if the power spectrum includes a peak amplitude that is at least 30% larger than the amplitudes of any other frequency

components. Depending on the existence of the dominant frequency component, we characterized PCs’ response as either rhyth-

mic-mode (if the dominant frequency component exists) or asynchronous-mode (if the dominant frequency does not exist). The

dominant frequency component of the histogram in rhythmic-mode was estimated again using the findpeaks command in MATLAB

2014a, where the findpeaks command detects and counts the number of local peaks in the smoothed histogram to estimate the

frequency.

Frequency modulation tendency
Frequency modulation tendency (FMT) is the index that measures the adaptability of the IPNF structure for top-down input, which is

calculated by counting the number of different frequency components that appear in the predetermined top-down input strength

range. For Figures 2B–2D and 3, the FMT of the IPNF structure was measured over top-down input strengths from 0 spikes/s to

120 spikes/s with 2 spikes/s increment (total 61 different stimulation strengths). For Figure 4C, the range of top-down stimuli was

increased from 0 spikes/s to 150 spikes/s with 2 spikes/s increments (total of 76 different strengths) to determine the FMT of the

IPNF structure before the state transition from the SST-dominated state to the PV-dominated state occurs. The occurrence of the
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state transition was determined by checking the oscillation frequency of PCs changing from low frequency (under 20 Hz; controlled

by SST INs) to high frequency (over 50 Hz; controlled by PV INs).

Quantification of phase-amplitude coupling
The strength of phase-amplitude coupling (PAC) was quantified by using the Envelope-to-Signal Correlation (ESC) measure (Bruns

and Eckhorn, 2004). The ESC quantifies the strength of PAC by calculating the correlation between the amplitude envelope of the

band-pass filtered high frequency signal and the band-pass filtered low frequency signal.

Quantification of noise vulnerability of phase-amplitude coupling with respect to amplitude-frequency relationships
of slow oscillations
The artificial phase-amplitude coupling (PAC) signals were generated by following procedures (Figure S5A): First, we extracted the

instantaneous phase and computed the envelope signal of slow oscillation. Second, we multiplied the envelope of slow oscillation

with the fast oscillation so that the amplitude of fast oscillation is modulated by the phase of slow oscillation. Lastly, we combined the

slow oscillation and the amplitude-modulated fast oscillation to generate a PAC signal.

Three cases of amplitude-frequency relationships were tested to see the potential benefit of maintaining the amplitude constant

during frequency modulation of slow oscillation (Figures S5 and S6). The frequencies examined were 4Hz, 6Hz, 8Hz, 10Hz, 12Hz,

and 14Hz, which are in the theta-alpha frequencies that are reported to create PAC signals with gamma frequency oscillations (Hyafil

et al., 2015; Voytek et al., 2010). The amplitudes of slow oscillations were modulated in a range from 0.2 to 5 times the default ampli-

tude strength. The following describes the three amplitude-frequency relationships (Figure S5B):

1. Case 1 (Amplitude maintains while frequency increases): Even if the frequency is modulated, the amplitude is fixed at the

default amplitude strength.

2. Case 2 (Amplitude increases when frequency increases): As the frequency increases, the amplitude also increases. As a result,

a 4 Hz oscillation will have an amplitude that is 0.2 times larger (i.e., 5 times less) than the default amplitude strength, and a

14 Hz oscillation will have an amplitude five times larger than the default amplitude strength.

3. Case 3 (Amplitude decreases when frequency increases): As the frequency increases, the amplitude decreases. Thus, a 4 Hz

signal will have an amplitude five times larger than the amplitude of the default amplitude strength, and a 14 Hz signal will have

an amplitude of 0.2 times larger (i.e., 5 times less) than the default amplitude strength.

Changes in coupling strengths of PAC signals for each of the three cases were examined by adding noise to the slow oscillations

(of different frequencies) before extracting their phase components and creating PAC signals with 60 Hz fast oscillation. The noise

level is given from 0 to 0.7 times the default amplitude strength (Figure S5D; it is conceivable to assume that the noise level is pro-

portional to the distance between distinct areas that generate low and fast oscillations).

Data analysis
Network simulations, data analysis, and visualizations were done with MATLAB 2014a (The MathWorks). For each simulation con-

dition, neuronal population activity of 1.5 s was simulated over 50 trials to assure the reliability/reproducibility of the output response

of the model. Considering the settling time, an initial 500 ms of simulation data were removed. Data analysis was performed on the

remaining 1 s of simulation data by computing spike-time histogram of PCs. The spike-time histogram is an estimate for the time-

varying firing rate of neuronal population. It was obtained by dividing the firing activity of PCs into discrete time bin of 2ms and count-

ing the number of spikes that fell in each time bin. Themean firing ratewas calculated by counting the number of spikes evoked during

1 s and averaged over the trials. The mean oscillation amplitude was measured by averaging the amplitudes of the spike-time his-

togram (which is corresponding to spikes/ms) within the 5% of the maximum amplitude.

QUANTIFICATION AND STATISTICAL ANALYSIS

In all analyses, box-and-whisker plots are presented. All the analyses were performed using MATALB 2014a. Details of data analysis

are documented in METHOD DETAILS.

DATA AND SOFTWARE AVAILABILITY

Codes and data used in this study can be found at http://sbie.kaist.ac.kr/software.
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Figure S1. Connectivity properties of heterogeneous interneuron classes in the layer 2/3 of the sensory 

cortex. Related to Figure 1.  

(A) Schematic of the connectivity patterns of the three interneuron (IN) classes (PV, SST, and VIP expressing 

interneurons) in the layer 2/3 of the sensory cortex. PV INs preferentially inhibit one another; SST INs inhibit 

all other classes of INs but avoids inhibiting themselves, and VIP INs preferentially inhibit SST INs. (B) Net 

synaptic contribution (calculated by the measure named individual neuronal contribution) of the presynaptic IN 

classes to postsynaptic neuronal classes adapted from Figure 7A in Pfeffer et al., 2013. INC is calculated by 

multiplying connection probability (Pcon) between pre- and postsynaptic neuronal populations and unitary 

postsynaptic charge (uPSQ) generated by single presynaptic spike. INC of each pathway is normalized by 

INCPVàPC.  

 

 

 



 
Figure S2. Conditions for generating oscillations in NFPC-SST and NFPC-PV. Related to Figure 1.  

(A) Schematic of the NFPC-SST. (B-C) Peak frequency and synchronization index of the PCs’ population firing 

activity were measured for every Pcon combinations in the NFPC-SST. We chose specific Pcon combination of 

PconSSTàPC=0.36 and PconPCàSST=0.18 that generates 18 Hz oscillation with high synchrony (indicated with 

white circles). (D) Schematic of the NFPC-PV. (E-F) Peak frequency and synchronization index of the PCs’ 

population firing activity were measured for every Pcon combinations in the NFPC-PV. We chose specific Pcon 

combination of PconPVàPC=0.53, PconPCàPV=0.4 and PconPVàPV=0.75 that generates 75 Hz oscillation with high 

synchrony (indicated with white circles). (G) Changes in synchronization index related to the self-inhibitory 

connections within PV INs.  

 



 
Figure S3. An example illustration of calculating frequency modulation tendency (FMT) of the IPNF 

structure. Related to Figure 2.  

Frequency modulation tendencies (FMTs) of the IPNF structure with particular connectivity strengths (i.e., 

connection probability; Pcon) were calculated by counting the number of different frequency components that 

appear in the predetermined top-down input strength range. In this figure, we illustrated the overall steps for 

searching the particular connection probabilities between SST INs and VIP INs (i.e., PconSSTàVIP, PconVIPàSST) 

that provide maximum FMT.  

 

 



 
Figure S4. Variation in the frequency modulation tendency (FMT) of the IPNF structure under increasing 

self-inhibition on SST and VIP interneurons. Related to Figure 3.  

(A) Self-inhibition connectivity of the SST interneurons is modulated by varying PconSSTàSST. When the 

VIPàSST pathway is disconnected (PconVIPàSST=0), the model generated resonant frequency (FR) of NFPC-SST, 

which is increased (FR,PconSSTàSST:0=18 Hz, FR,PconSSTàSST:0.07=22 Hz, FR,PconSSTàSST:0.3=30 Hz) with raising 

PconSSTàSST. The IPNF structure with increasing PconSSTàSST tends to give up the rhythmic-mode after 

oscillating at the characteristic peak frequency (i.e., resonant frequency) of the NFPC-SST, rather than modulating 

its oscillation frequency. As a result, the frequency modulation tendency (FMT) drops dramatically as the 

PconSSTàSST increases. (B) When increasing PconVIPàVIP, the IPNF structure showed a reduced FMT again, but 

at a different rate compared to when increasing PconSSTàSST. As the PconVIPàVIP increases, a larger PconVIPàSST 

is required (Figure 3D, turquoise) to increase the FMT. However, increasing PconVIPàSST causes a reduced FMT 

(Figure 3D, black), which was shown in our previous result (Figure 2B, right bottom). As a result, increasing 

self-inhibition on VIP interneurons causes a decrement in the FMT.  

 



 
Figure S5. Experimental design to investigate the influence of various amplitude-frequency relationships 

of slow oscillation on phase-amplitude coupling (PAC) strength. Related to Figure 5.  

(A) Generation of phase-amplitude coupling (PAC) signal (left) and quantification of PAC strength (right). (B) 

Three possible amplitude-frequency relationships of slow oscillation (see Method Details). (C) Experimental 

design to test noise vulnerability of PAC signal with respect to the amplitude-frequency relationships of slow 

oscillations.  

 

 

 

 

 

 

 



 
Figure S6. Quantification of noise vulnerability of phase-amplitude coupling (PAC) with respect to the 

amplitude-frequency relationship of slow oscillation. Related to Figure 5.  

(A) Slow oscillations at six different frequencies (i.e., 4Hz, 6Hz, 8Hz, 10Hz, 12Hz, and 14Hz) were used to 

generate phase-amplitude coupling (PAC) signals. In Case 1, none of the generated PAC signals showed a 

dramatic decrease in coupling strength against noise, showing its robustness against noise. On the other hand, 

noticeable decreases in coupling strengths of the PAC signals created by 4 & 6 Hz and 12 & 14 Hz were 

observed in Case 2 (middle) and Case 3 (right), respectively. Frequency modulation of slow oscillations and the 

corresponding changes in PAC with gamma oscillations can be viewed as a series of processes for cognitions. It 

is therefore ideal to provide reliable and robust coupling PAC strengths for all slow oscillations (4H to 14 Hz). 

This result shows that case 1, which maintains constant amplitude over varying frequency, provides the highest 

reliability. Due to this aspect, maintaining the amplitude constant over varying frequency might be preferable 

for slow oscillations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. Distribution of electrophysiological properties of neuronal classes in L2/3 of the sensory cortex. 

Related to Figure 1 & 2 & 3 & 4 & 5 & 6. 

 

Symbol Function 
Parameter 

PC PV SST VIP 

𝜏" Membrane time constant (ms) 10.5±5.1 3.1±1.3 11.8±4.6 10.9±3.8 

𝑉%  Spike threshold (mV) -41.5±6.0 -41.6±3.4 -41.8±6.3 -43.7±5.3 

𝑉&'(')  Resting potential (mV) -67.4±4.3 -66.4±3.0 -59.9±4.0 -65.7±1.9 

𝑔+ Leak conductance (nS) 20.3±6.0 77.1±25.6 21.4±8.7 26.6±10.9 

𝐸+ Leak reversal potential (mV) -70 

𝐸(-.,' Excitatory reversal potential (mV) 0 

𝐸(-.,0  Inhibitory reversal potential (mV) -85 

𝐶" Membrane capacitance (pF) 200 

∆%  Slope factor (mV) 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Estimated distribution of synaptic interactions between neuronal classes in L2/3 of the sensory 

cortex. Related to Figure 1 & 2 & 3 & 4 & 5 & 6. 

 

Symbol Function 
Parameters 

PresynapticàPostsynaptic 

uPSP 

Unitary 
postsynaptic 

potential amplitude 
(mV) 

0.37±0.1 
(PCàPC) 

-0.52±0.1 
(PVàPC) 

-0.39±0.1 
(SSTàPC) 

-0.39±0.2 
(VIPàSST) 

0.82±0.1 
(PCàPV) 

-0.76±0.2 
(PVàPV) 

-0.37±0.1 
(SSTàPV) 

-0.49±0.2 
(VIPàVIP) 

0.39±0.11 
(PCàSST) 

 -0.49±0.2 
(SSTàSST) 

 

0.39±0.11 
(PCàVIP) 

 -0.39±0.1 
(SSTàVIP) 

 

𝜏343,&0('  Rise time of uPSP 
kinetics (ms) 

3.5±0.6 
(PCàPC) 

3.4±0.5 
(PVàPC) 

5.4±0.5 
(SSTàPC) 

4.9±1.2 
(VIPàSST) 

1.6±0.2 
(PCàPV) 

1.8±0.2 
(PVàPV) 

3.1±0.6 
(SSTàPV) 

4.9±1.2 
(VIPàVIP) 

2.6±0.5 
(PCàSST) 

 4.9±1.2 
(SSTàSST) 

 

2.6±0.5 
(PCàVIP) 

 4.9±1.2 
(SSTàVIP) 

 

𝜏343,5'67- Decay time of 
uPSP kinetics (ms) 

28.6±4.7 
(PCàPC) 

40.0±4.4 
(PVàPC) 

52.5±7.3 
(SSTàPC) 

32.4±12 
(VIPàSST) 

11.7±1.6 
(PCàPV) 

16.4±4.1 
(PVàPV) 

16.8.1±4.1 
(SSTàPV) 

32.4±12 
(VIPàVIP) 

16.7±2.2 
(PCàSST) 

 32.4±12 
(SSTàSST) 

 

16.7±2.2 
(PCàVIP) 

 32.4±12 
(SSTàVIP) 

 

𝑔(-.,"78 Synaptic 
conductance (nS) 

0.39±0.04 
(PCàPC) 

2.8±0.2 
(PVàPC) 

1.4±0.42 
(SSTàPC) 

1.8±0.48 
(VIPàSST) 

2.1±0.09 
(PCàPV) 

7.8±0.5 
(PVàPV) 

2.7±0.21 
(SSTàPV) 

2.3±0.48 
(VIPàVIP) 

0.64±0.06 
(PCàSST) 

 
1.3±0.48 

(SSTàSST) 
 

0.59±0.06 
(PCàVIP) 

 1.5±0.48 
(SSTàVIP) 

 

𝜏&0('  
Rise time of 

synaptic 
conductance (ms) 

0.23±0.16 
(PCàPC) 

0.21±0.15 
(PVàPC) 

0.36±0.12 
(SSTàPC) 

0.21±0.22 
(VIPàSST) 

0.16±0.17 
(PCàPV) 

0.18±0.09 
(PVàPV) 

0.20±0.14 
(SSTàPV) 

0.36±0.12 
(VIPàVIP) 

0.25±0.17 
(PCàSST) 

 0.32±0.22 
(SSTàSST) 

 

0.24±0.11 
(PCàVIP) 

 0.26±0.16 
(SSTàVIP) 

 

𝜏5'67- 
Decay time of 

synaptic 
conductance (ms) 

6.7±1.8 
(PCàPC) 

6.4±1.8 
(PVàPC) 

13.1±2.1 
(SSTàPC) 

13.1±1.1 
(VIPàSST) 

3.3±1.6 
(PCàPV) 

4.6±1.7 
(PVàPV) 

5.2±1.8 
(SSTàPV) 

11.3±1.8 
(VIPàVIP) 



5.4±1.2 
(PCàSST) 

 
12.3±1.5 

(SSTàSST) 
 

5.6±1.1 
(PCàVIP) 

 10.2±0.96 
(SSTàVIP) 

 

uPSC 
Unitary 

postsynaptic 
current (pA) 

-14.2±2.5 
(PCàPC) 

19.0±2.7 
(PVàPC) 

93.9±1.6 
(SSTàPC) 

8.45±1.8 
(VIPàSST) 

-69.2±6.1 
(PCàPV) 

54.8±6.6 
(PVàPV) 

17.2±2.9 
(SSTàPV) 

13.7±4.1 
(VIPàVIP) 

-20.4±3.5 
(PCàSST) 

 14.2±3.8 
(SSTàSST) 

 

-21.2±3.4 
(PCàVIP) 

 11.0±2.1 
(SSTàVIP) 

 

uPSQ 
Absolute unitary 

postsynaptic charge 
(nC) 

1.46±0.2 
(PCàPC) 

2.10±0.2 
(PVàPC) 

1.91±0.3 
(SSTàPC) 

0.63±0.1 
(VIPàSST) 

1.38±0.1 
(PCàPV) 

1.42±0.5 
(PVàPV) 

0.69±0.1 
(SSTàPV) 

1.5±0.4 
(VIPàVIP) 

1.03±0.1 
(PCàSST) 

 1.10±0.3 
(SSTàSST) 

 

0.99±0.1 
(PCàVIP) 

 1.22±0.3 
(SSTàVIP) 
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